Der Einfluß des Zements auf die Eigenschaften von Zementsuspensionen zum Auspressen von Hohlräumen

Von Kurt Walz ') und Hans Mathieu, Düsseldorf

Ubersicht

Immer wieder wird die Frage gestellt, inwieweit die nach den "Vorläufigen Richtlinien für das Einpressen von Zementmörtel in Spannkanäle" wichtigen Eigenschaften des Einpreßmörtels von den chemischen und physikalischen Eigenschaften des Zements abhängen. Dazu wurden 29 nach Herkunft, Herstellung und Zusammensetzung sehr verschiedene Zemente eingehend untersucht.

Eine allgemein gültige Beziehung zwischen Herstellung, Kornaufbau, Erstarren, Normenlestigkeit sowie chemischer und mineralogischer Zusammensetzung der Zemente und den nach den "Vorläuligen Richtlinien" ermittelten Eigenschaften der mit den Zementen hergestellten Einpreßmörtel konnte nicht gefunden werden.

1. Einleitung

Zementsuspensionen dienen zum Auspressen von Spannkanälen, von Blockfugen in Massenbetonbauten, von Rissen, Spalten und Hohlräumen in Bauwerken, von wasserführenden Gebirgsschichten im Berg-, Stollen- und Tunnelbau oder zur Verfestigung von nicht genügend festem Untergrund und Gebirge.

Risse und Spalten mit mindestens 0,3 mm Weite oder körnige Haufwerke (z. B. sandiger Untergrund) mit einem Kleinstkorn bis 2 mm Durchmesser können mit wasserreichen Zementsuspensionen (Wasserzementwert w = 0,8...10) noch verpreßt werden. Diesen Suspensionen kann feiner Sand bis 0,2 mm Korndurchmesser zugesetzt werden.

Der Durchmesser der in einer Sandschüttung aus kugeligen Körnern mit 2 mm Durchmesser (D) vorhandenen Hohlräume ergibt sich zu etwa 0,15 D, also zu rd. 0,3 mm. Spaltweiten bis herunter zu 0,1...0,3 mm und Haufwerke mit einem kleinsten Korndurchmesser von 0,7...2,0 mm lassen sich mit feingemahlenen, handelsüblichen Zementen verpressen. Noch feiner gemahlene Zemente, sog. "Kolloidzemente", deren durchschnittliche Korngröße kleiner als 0,01 mm (Größtkorn 0,03 mm) ist, ermöglichen ein Verpressen von Spalten bis herab zu 0,03...0,1 mm Weite und von Haufwerken mit einem kleinsten Korndurchmesser von 0,2...0,7 mm [1].

Auszugsweise vorgetragen auf dem "FIP-RILEM Symposium on Injection Grout for Prestressed Cancrele" in Trondheim vom 5. bis 7. Januar 1961.

Bei Zementsuspensionen zur Verfestigung oder zum Abdichten von Hohlräumen im Untergrund, im Fels usw. sind im wesentlichen die Eigenschaften der frischen Suspension, vor allem das Fließvermögen und das Sedimentieren von Bedeutung. Der hohe Wasserzementwert solcher Suspensionen, der z. T. weit über 1,0 liegt, ist nötig, weil die Suspension meist eine niedere Viskosität aufweisen muß. Er ist andererseits möglich, weil nach einem Absetzen des Zements im Hohlraum das zum Transport des Zements dienende Überschußwasser durch hohen Druck aus der abgedichteten Zone als Filterwasser weitgehend ausgepreßt wird [2]. Deshalb sollen solche Suspensionen sich zunächst ohne Sedimentieren verpressen lassen, dann aber in einer ausreichenden Entfernung sedimentieren, damit kein größerer Bereich als notwendig von der Suspension durchsetzt wird.

Andere Bedingungen liegen für das im folgenden behandelte Auspressen der Kanäle mit stählernen Spanngliedern im Spannbeton vor. Für diese Kanäle mit verhältnismäßig großen Durchflußquerschnitten muß die Zementsuspension – bei dieser Anwendung Einpreßmörtel genannt – einen möglichst niederen Wasserzementwert aufweisen. Im allgemeinen liegt hier der Wasserzementwert zwischen 0,35 und 0,45.

Durch Einpreßmörtel ausreichender Festigkeit soll der Verbund zwischen dem im Spannkanal liegenden, oft aus vielen Stäben oder Drähten bestehenden Spannglied und den Wänden des Spannkanals geschaffen werden. Alle Hohlräume müssen ausgefüllt werden, damit der Spannstahl auch gegen Korrosion geschützt ist. In den "Vorläufigen Richtlinien für das Einpressen von Zementmörtel in Spannkanäle" [3] werden daher folgende Anforderungen an den frischen oder erhärteten Einpreßmörtel gestellt:

Möglichst geringes Absetzen des frischen Mörtels durch Sedimentieren und Schrumpfen (Raumverminderung höchstens 2%).

Gutes Fließvermögen bis zur Beendigung des Einpressens.

Druckfestigkeit von Zylindern mit 10 cm Durchmesser und 8 cm Höhe nach: 7 Tagen mindestens 200 kg/cm[≥], nach 28 Tagen mindestens 300 kg/cm².

Frostbeständigkeit, d. h. keine Volumenvergrößerung beim Gefrieren 3 Tage alter, bei + 5 °C erhärteter Proben.

Diese geforderten Eigenschaften hängen unter sonst gleichen Verhältnissen vom Zement und dem Wasserzementwert ab. Es wird daher immer wieder die Frage gestellt, wie Zement für Einpreßmörtel mit optimalen Eigenschaften beschaffen sein soll.

Die erforderliche Festigkeit ist bei den im allgemeinen angewendeten Wasserzementwerten mit Normenze menten zu gewährleisten. Ob die verlangte "Frostbeständigkeit" auch mit den stofflichen oder physikalischen Eigenschaften eines Zements zusammenhängt, ist nicht ausreichend bekannt. Es bleibt vor allem auch festzustellen, inwieweit das Absetzen (d. i. Wasserabsondern und Schrumpfen) sowie das Fließvernögen (Konsistenz) mit bestimmten Zementeigenschaften, wie che mische Zusammensetzung, Erstarren und Mahlfeinheit, in Zusammenhang gebracht werden können.

Tafel 1 Herstellungsverfahren der Zemente

Zement Nr.	Zement- art	Güte- klasse	Ofensystem	Mahlsystem
1	PZ1)	475		
2	PZ	475	Schachtofen	Verbundmühle und
3	PZ	375	und Drehofen	Becherwerksumlaufmühle
4	PZ	275		
5	PZ	475		Verbundmühle und
6	PZ	375	Drehofen	Becherwerksumlaufmühl
7	PZ	275		
8	PZ	475		Verbundmühle und
9	PZ	375	Drehofen	Becherwerksumlaufmühle
10	PZ	275		
11	PZ	475		Verbundmühle und
12	PZ	275	Drehofen	Becherwerksumlaufmühl
13	PZ	375	1000 18 Vs	1 W 1 W 1 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W
14	PZ	275	Drehofen	Verbundmühle
15	PZ	275	Drehofen	Verbundmühle
16	PZ	275	Drehofen	Verbundmühle und Becherwerksumlaufmühl
17	PZ	375	176 m. 1 15 U.S. 187	0400 BB ASS MARK DO
18	PZ	275	Schachtofen	Verbundmühle
19	PZ	275	Schachlofen und Drehofen	Verbundmühle
20	PZ	275	Drehofen	Verbundmühle
21	PZ	275	Schachtofen und Drehofen	Verbundmühle
22	EPZ1)	275	Drehofen	Verbundmühle
23	EPZ	275	Drehofen	Verbundmühle
24	PZ1)	475		Verbundmühle und
25	PZ	375	Drehofen	Becherwerksumlaufmühl
26	PZ	275		
27	PZ	475		Verbundmühle und
28	PZ	275	Drehofen	Becherwerksumlaufmühl
29	PZ	275	Schachtofen und Drehofen	Verbundmühle

¹⁾ Mit 0,28, 0,36 bzw. 0,67 % CaCl₂

Um zu diesen Fragen einen Beitrag zu liefern, wurden Zementsuspensionen aus 29 Zementen systematisch nach den "Vorläufigen Richtlinien" untersucht. Von den Zementen selber, die nach unterschiedlicher Rohstoffgrundlage und Herstellung ausgewählt

Tafel 2 Prüfung der Zemente auf Erstarren und Festigkeit nach DIN 1164

Zement	Zement-	Güte-	Wasser-	Erst	arren	Ausbreit-		Biegezug	festiakei	Mörlel- t	Prismen	Druckfe	stiakeit	
Nr.	Zemenr- art	klasse	anspruch1)	D - 1	Ende	maßt)		in kg/cr				in kg/cr		
LNI.	u.,	Kidoso	Gew%	Beginn	Ende	cm	1 T	3 T	7 T	28 T	1 T	3 T	7 T	28
1	PZ	475 3)	29,0	1 h 25 m	2 h 40 m	19,0	55	64	75	81	227	401	482	57
2	PZ	475	29,0	4 h 00 m	5 h 15 m	20,0	27	57	71	81	110	300	408	49
3	PZ	375	28,5	3 h 05 m	4 h 25 m	19,0		66	72	91		351	430	54
4	PZ	275	26,0	4 h 05 m	5 h 45 m	19,0		41	55	76		226	303	42
5	PZ	475	29,0	3 h 15 m	4 h 55 m	18,0	39	64	76	87	190	393	457	53
6	PZ	375	28,5	3 h 00 m	4 h 50 m	18,5		56	65	86		293	363	44
7	PZ	275	27,5	3 h 40 m	5 h 35 m	17,0		51	62	79		272	323	44
8	PZ	475	27,0	2 h 25 m	3 h 45 m	16,7	57	61	76	88	165	349	487	59
9	PZ	375	27,0	3 h 00 m	4 h 15 m	20,0		54	70	80		276	403	55
10	PZ	275	26,0	3 h 35 m	5 h 35 m	18,4		47	62	79		225	331	46
11	PZ	475	27,5	3 h 35 m	6 h 25 m	18,7	38	67	72	78	147	404	494	54
12	PZ PZ	275	28,0	3 h 25 m	4 h 35 m	18,0	M.	47	62	82		238	357	49
13	PZ	375	27,0	3 h 05 m	4 h 25 m	18,0		49	61	77		244	346	5
14	PZ	275	26,5	2 h 55 m	4 h 25 m	18,0		44	60	78		230	377	5
15	PZ	275	26,0	3 h 45 m	5 h 35 m	17,5		38	59	69		172	293	4
16	PZ	275	27,5	3 'n 35 m	5 h 00 m	19,5		48	66	83	1	246	353	4
17	PZ	375	27,5	3 h 05 m	4 h 15 m	18,5		51	61	83		278	341	4
18	PZ	275	27,0	3 h 10 m	4 h 35 m	19,0		47	60	74		254	329	4
19	PZ	275	27,0	3 h 30 m	5 h 20 m	19,8		44	50	71		189	255	3
20	PZ	275	26,0	3 h 20 m	4 h 35 m	18,5	1	42	56	77		170	297	4
21	PZ	275	27,0	3 h 55 m	5 h 35 m	19,5		45	61	80		224	318	4
22	PZ	275 *)	27,0	2 h 40 m	4 h 05 m	19,0		36	45	68		169	235	3
23	EPZ	275	27,5	3 h 15 m	5 h 05 m	18,5		38	54	77	6	163	272	4
23	507	175 31	28.0	2 h 20 m	3 h 30 m	19,0	46	64	72	85	186	365	459	5

25 26 27	PZ PZ PZ	375 275 475	26,5 26,0 33,0	3 h 40 m 3 h 40 m 2 h 45 m	5 h 25 m 5 h 30 m 4 h 10 m	19,3 19,0 19,5	40	4 4 8	62 73	84 76 93	182	210 196 351	371 331 491	507 466 600
38 88	PZ PZ	275	27,0	4 h 00 m 2 h 15 m	5 h 45 m 3 h 40 m	18,6		47	62	80		229	349	496
Wasseral	Wasseranspruch der Zemen Mil 0.28, 0,36 bzw. 0,67 %		ür Normalsteife	Ipasle für Normalsteife noch DIN 1164 CoCI,	ay Ye	Ausbreilmaß des Mörtels nach DIN 1164 bei einem Wasserzementwert von 0,60	Mörtels	nach DIN	V 1164 E	ei einer	wasse	erzemenly	wert von	09′0

wurden, sind zur Kennzeichnung die chemische und mineralogische Zusammensetzung, die spezifische Oberfläche, der Kornaufbau, das Erstarren, die Raumbeständigkeit und die Normenfestigkeit ermittelt worden.

2. Auswahl der Zemente

Die untersuchten 27 Portlandzemente und 2 Eisenportlandzemente sind in Tafel 1 aufgeführt. Sie gehören nach ihrer Lieferbezeichnung den Güteklassen Z 275, Z 375 und Z 475 an. Um die verschiedenen Rohstoffgrundlagen zu berücksichtigen, wurden aus den einzelnen Herstellungsgebieten der Bundesrepublik jeweils 1 bis 3 Porlandzementwerke ausgewählt, so daß Zemente aus Schacht- und Drehofenklinker einbezogen wurden und Zemente, die in Verbundmühlen oder Becherwerksumlaufmühlen (Sichtermühlen) gemahlen worden waren. Einige Zemente stammen aus Werken, die mit beiden Ofensystemen und zum Teil auch mit verschiedenen Mahlsystemen arbeiten. (In vielen Fällen konnte der Zement nicht dem einen oder anderen Ofen- und Mahlsystem zugeordnet werden, weil es sich bei diesen Zementen auch um Gemische handeln kann.)

3. Untersuchung der Zemente

Die Zemente wurden nach DIN 1164 auf Erstarren, Raumbeständigkeit und Festigkeit sowie Mahlfeinheit geprüft, außerdem wurde die chemische Zusammensetzung durch eine eingehende chemische Analyse ermittelt und der Anteil der Klinkerphasen errechnet.

3.1 Erstarren, Raumbeständigkeit und Festigkeiten nach DIN 1164 Die Prüfergebnisse sind in Tafel 2 zusammengestellt. Die Prüfung auf Raumbeständigkeit wurde von allen Zementen bestanden.

3.2 Mahlfeinheit

Da die Mahlfeinheit nach den bisherigen Feststellungen eine Einflußgröße zu sein scheint, wurde die Mahlfeinheit durch die spezifische Oberfläche der Zemente nach Blaine und durch die Sedimentationsanalyse nach Andreasen bis in den feinsten Bereich untersucht.

Die nach den drei Verfahren (Siebanalyse, spezifische Oberfläche und Sedimentationsanalyse) erhaltenen Kennwerte für die Feinheit finden sich in Tafel 3.

Siebanalyse. Die Zemente wurden auf den Maschensieben mit 0,2 mm, 0,09 mm und 0,06 mm abgesiebt und die Siebdurchgänge in Gew.-% angegeben. Es fanden sich folgende Grenzen:

	für Anteil < 0,09 mm	für Anteil < 0,06 mm
max.	99,8 % (Zemente Nr. 5 und 24)	99,2 % (Zement Nr. 27)
min.	85,9 % (Zement Nr. 15)	66,0 % (Zement Nr. 15)

Die spezifische Oberfläche wurde nach Blaine über die Luftdurchlässigkeit einer Zementschicht bestimmt. Die größte spezifische Oberfläche fand sich mit 5460 cm²/g für Zement Nr. 1 und die kleinste mit 2600 cm²/g für Zement Nr. 28.

Tafel 3 Mahlfeinheit der Zemente

Zement	Zement-	Güle-	1	Siebarchgang rch Sieb					ntations in Gew	CHARLES OF SPECIME.		nach	Spezifische Oberfl	für Anteil	Spezifisches
Nr.	art	klasse	0,2	0,12	0,09	0,06	0,030	0,015	0,008	0,004	0,002	Blaine	0,002 0,128 mm	< 0,002 mm (als Differenz)	Gewicht
-24752-6			mm	mm	mm	mm	mm	mm	mm	mm	mm	cm²/g	cm²/g	cm²/g	g/cm³
1	PZ1)	475	99,9	99,9	99,7	98,0	85,2	60,5	39,6	21,5	8,3	5460	2100	3360	3,13
2	PZ	475	99,9	99,9	98,7	94,4	81,0	54,0	33,0	15,1	5,0	4800	1940	2860	3,12
3	PZ	375	100,0	100,0	98,9	95,5	80,0	59,3	32,6	14,4	4,4	4340	1970	2370	3,13
4	PZ	275	99,8	96,7	91,2	76,8	52,7	32,5	19,2	9,5	3,6	2980	1420	1560	3,11
5	PZ	475	99,9	99,9	99,8	98,3	78,7	48,8	32,8	18,2	8,2	4530	1830	2700	3,12
6	PZ	375	99,8	98,9	96,0	86,7	59,0	37,2	24,6	11,8	4,3	3350	1460	1890	3,14
7	PZ	275	99,5	97,0	92,0	79,1	53,3	29,1	16,7	7,3	2,5	2730	1210	1520	3,14
8	PZ	475	99,9	99,8	99,5	97,3	86,0	53,7	35,2	17,7	8,8	5160	1830	3330	3,15
9	PZ	375	99,9	99,9	99,4	95,9	77,8	50,3	30,9	17,2	7,6	4290	1810	2480	3,11
10	PZ	275	99,8	97,0	92,5	78,7	56,2	33,2	21,0	10,8	3,9	2950	1300	1650	3,19
11	PZ	475	99,9	99,0	97,6	93,4	82,0	55,6	32,4	16,8	6,3	4490	1900	2590	3,15
12	PZ	275	99,9	98,8	95,0	88,6	63,2	35,5	21,6	11,1	4,0	3000	1440	1560	3,12
13	PZ	375	99,9	99,6	94,4	81,4	60,0	39,0	24,0	12,3	5,8	3360	1380	1980	3,19
14	PZ	275	99,9	98,5	95,7	86,0	70,7	40,0	24,1	12,4	6,5	3640	1390	2250	3,20
15	PZ	275	99,6	96,0	85,9	66,0	48,1	28,0	18,3	8,6	2,7	2750	1240	1510	3,15
16	PZ	275	99,9	99,4	92,2	80,1	53,2	35,1	21,7	9,3	2,9	2720	1410	1310	3,14
17	PZ	375	99,9	99,0	95,0	83,8	60,0	41,0	25,2	14,3	5,8	3800	1340	2460	3,10
18	PZ	275	99,9	98,5	93,7	82,4	59,2	39,4	25,6	14,0	5,5	3700	1560	2140	3,10
19	PZ	275	99,7	97,0	92,6	80,5	55,0	31,0	18,2	8,3	2,5	2740	1320	1420	3,09
20	PZ	275	99,6	97,0	91,1	76,0	53,0	31,8	18,5	8,8	3,4	2640	1270	1370	3,14
21	PZ	275	99,8	99,2	92;0	78,7	55,3	35,6	23,1	11,3	5,0	3220	1350	1870	3,11
22	EPZ1)	275	99,9	99,2	95,9	87,9	64,1	40,8	24,8	13,5	5,8	3490	1580	1910	3,03
23	EPZ	275	99,9	99,2	96,7	86,0	59,1	39,5	24,3	14,3	5,8	3380	1640	1740	3,02
24	P71)	475	99 9	99 9	99.8	98.0	83.0	56.1	34.7	18.8	10.0	4730	1790	2940	3,12

2930 1300 1630 4530 2370 2160 2600 1370 1230 4030 1620 2410			77.7	20,07	7/7	4/1/	6/7/	42,7	47'77	0, :	,	000		0.0000000000000000000000000000000000000	Sec. 100.00
PZ 475 99,9 99,7 99,7 99,7 99,7 99,7 99,7 99,7 99,7 99,7 99,7 99,7 99,7 98,0 32,4 18,1 5,8 0,6 2600 1370 1230 p2 275 99,2 98,0 98,0 59,0 78,0 55,7 42,8 27,4 14,7 5,5 4030 1620 2410			99,4	7'86	92,0	78,0	54,7	32,4	20,2	11,8	3,7	2930	1300	1630	3,14
PZ 275 99,2 98,0 93,0 78,0 59,0 32,4 18,1 5,8 0,6 2600 1370 1230			6'66	6'66	2'66	99,2	87,3	72,6	40,9	21,0	5,5	4530	2370	2160	3,12
D7 775 000 004 043 857 657 428 274 14,7 5,5 4030 1620 2410	Zd 8t	275	99,2	0'86	93,0	78,0	59,0	32,4	18,1	5,8	9'0	2600	1370	1230	3,15
	PZ PZ	275	6'66	9'66	8,96	85,2	65,7	42,8	27,4	14,7	5,5	4030	1620	2410	3,13

Teilt man die 29 Zemente nach ihrer spezifischen Oberfläche in 3 Gruppen ein (grobe Zemente, Zemente mittlerer Feinheit und feine Zemente), so ergeben sich für diese folgende spezifische Oberflächen:

grobe Zemente (2600 bis 3400 cm²/g) im Mittel 2950 cm²/g, Zemente mittlerer Feinheit (3400 bis 4200 cm²/g),

im Mittel 3700 cm²/g,

im Mittel 4700 cm²/g. feine Zemente (4200 bis 5460 cm²/g)

Bei der Sedimentationsanalyse nach Andreasen wurden mit Chinolin als Schlämmflüssigkeit die Anteile < 0,030 mm, < 0,015 mm, < 0,008 mm, < 0,004 mm und < 0,002 mm erhalten. Typische Beispiele für die Kornverteilung sind in den Bildern 1 bis 3 wiedergegeben. Bild 1 ist kennzeichnend für feine Zemente (Nr. 1, 8, 24 und 27), Bild 2 für Zemente mit mittlerer Feinheit (Nr. 14, 17 und 29) und Bild 3 für grobe Zemente (Nr. 16, 20 und 28). Die Zemente weisen durchweg eine stetig ansteigende Kornverteilungskurve auf. In Bild 1 gibt die Kurve für Zement Nr. 27 die

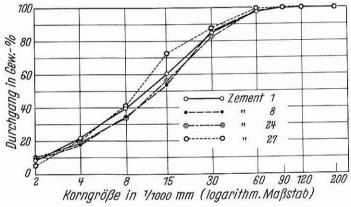


Bild 1 Beispiel für die Kornverteilung feiner Zemente (Nr. 1, 8, 24 und 27)

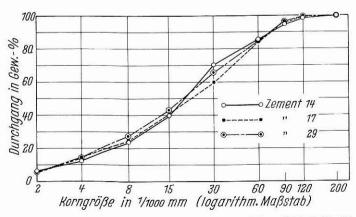


Bild 2 Beispiel für die Kornverteilung von Zementen mittlerer Feinheit (Nr. 14, 17 und 29)

Tafel 4 Berechnung der spezifischen Oberfläche (O_{spez.}) für die Korngruppe 0,002 . . . 0,128 mm nach S. Odén (Beispiel für Zement Nr. 1)

D	G	△ _D		⊿ _G	△ _G /△ _E
2 4 8 16	8,5 21,5 39,5 62,5	2 4 8		13,0 18,0 23,0	6,50 4,50 2,88
32 64 128	88,0 98,5 100,0	32 64		25,5 10,5 1,5	1,59 0,33 0,02
	1	ΣΔ _G /Δ _D			= 15,82
	/⊿ _D · ⊿ log D 0,002 0,128 mr	n	= = =	15,82 · 0,30 4,76 600 · 2,30 3,13 2100	03 · 4,76
	nach Blaine pez. 0,0020,1	28 mm	=	5460 cm²/g 2100 cm²/g	
O _{spe}	z. 0 0,002 mr	n	-	3360 cm²/g	

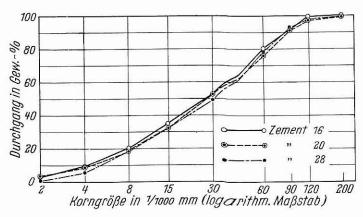


Bild 3 Beispiel für die Kornverteilung grober Zermente (Nr. 16, 20 und 28)

Kornverteilung eines Zementes wieder, der in einer Becherwerksumlaufmühle gemahlen wurde.

Um die spezifische Oberfläche für den Anteil bis 0,002 mm als weiteren Kennwert zu erhalten, wurde die Oberfläche der Korngruppe von 0,002 bis 0,128 mm aus den Kornanteilen der Sedimentationsanalyse nach Odén errechnet (Tafel 4) [4].

Die Differenz aus der spezifischen Oberfläche nach Blaine und nach Odén gibt einen Anhaltswert für die vielleicht ebenfalls bedeutungsvolle spezifische Oberfläche des Anteils < 0,002 mm; diese ist in Tafel 3 aufgeführt.

3.3 Chemische und mineralogische Zusammensetzung

Die chemische Zusammenseizung aller Zemente und die mineralogische Zusammensetzung der Portlandzementklinker sind aus Tafel 5 zu ersehen. Die Gehalte der Klinker an Tricalciumaluminat (C_3A), Tricalciumsilikat (C_3S), Bicalciumsilikat (C_2S) und Tetracalciumaluminatferrit (C_4AF) wurden nach Bogue als "bedingt

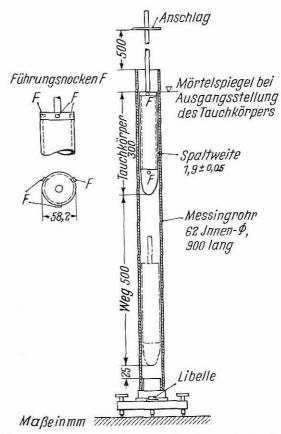


Bild 4 Einlauchgerät zum Messen der Konsistenz des Einpreßmörtels (Gewicht des Tauchkörpers 5000 g)

Tafel 5 Chemische und mineralogische Zusammensetzung der Zemente

						Che	emische	Zusamr	nenselzi	ung in	Gew	P/o				Klin	kerminer	ale erre	hnet	
Zement	Zement-	Güle-	Unlösl.	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	Mn ₂ O ₃	CaO	MgO	K ₂ O	Na ₂ O	SO''3	S''	CI,	Glüh-	r		H. Bogu	е	freier Kalk¹
Nr.	ari	klasse	Rückst.		+ TiO ₂		8								verlust		in G	ewº/o		Gew%
					+ P ₂ O ₃											C ₃ S	C ₂ S	C ₃ A	C,AF	
1	PZ²)	475	0,17	18,29	5,49	4,73	0,07	63,22	1,39	0,92	0,05	2,49		0,18	2,52	57,9	8,8	6,4	14,6	2,36
2	PZ	475	0,39	18,75	5,74	4,46	0,11	62,90	1,50	0,83	0,05	2,85			2,54	52,3	14,3	7,5	13,9	1,95
3	PZ	375	0,50	18,51	5,49	4,75	0,09	63,03	1,60	0,83	0,06	2,88		0,03	2,26	56,9	10,2	6,4	14,7	1,71
4	PZ	275	0,64	18,41	5,89	4,83	0,12	62,15	1,58	0,83	0,05	2,53		0,03	2,98	49,8	15,3	7,2	15,1	2,32
5	PZ	475	0,15	19,07	5,73	2,84	0,17	64,23	2,60	0,79	0,27	2,78			1,32	60,5	9,1	10,1	9,2	1,30
6	PZ	375	0,21	19,44	6,29	2,81	0,18	63,68	2,14	0,92	0,32	2,69			1,19	52,0	16,5	11,6	9,1	1,30
7	PZ	275	0,16	19,60	6,47	2,84	0,17	64,48	2,04	0,85	0,13	2,20			0,81	54,3	15,2	12,1	9,2	1,26
8	PZ	475	0,31	19,80	4,91	2,70	0,12	64,84	1,67	0,38	0,08	2,93			1,69	63,3	9,2	7,9	8,2	1,49
9	PZ	375	0,36	20,09	5,52	2,71	0,09	64,10	1,21	0,50	0,11	2,74			2,54	52,5	18,0	9,5	8,3	2,00
10	PZ	275	0.33	19,92	5,81	2,76	0,08	65,25	1,01	0,40	0,07	2,76			1,54	55,7	15,1	10,6	8,6	1,85
11	PZ	475	0,57	18,57	5,02	3,18	0,12	63,40	3,03	0,78	0,29	2,74		0,03	1,68	63,3	5,5	7,7	10,0	1,80
12	PZ	275	0,86	19,04	6,21	2,91	0,18	62,46	3,21	0,75	0,30	2,62			1,28	46,2	19,8	11,2	9,4	2,39
13	PZ	375	0,18	21,33	5,14	2,64	0,13	65,68	0,95	0,26	0,07	2,44			1,25	52,2	21,8	8,9	8,4	1,85
14	PZ	275	0,19	21,26	5,17	2,62	0,11	65,82	0,89	0,24	0,09	2,46			1,23	52,8	21,1	9,1	8,3	1,93
15	PZ	275	0,19	19,58	6,24	2,77	0,09	62,17	4,14	1,68	0,22	2,22			1,11	46,4	21,2	11,4	8,4	1,65
16	PZ	275	0,26	18,73	6,58	3,71	0,08	63,31	2,09	1,64	0,15	2,44			1,16	54,1	12,9	10,7	11,3	1,42
17	PZ	375	0,50	22,48	3,95	1,64	0,09	66,21	0,72	0,39	0,17	1,82		0,01	2,07	56,3	22,0	7,5	5,3	2,00
18	PZ	275	0,71	22,30	3,97	1,60	0,09	65,60	0,72	0,39	0,17	1,62		0,03	2,77	55,0	22,5	7,7	5,1	2,18
19	PZ	275	0,67	20,66	6,33	2,21	0,13	62,74	1,45	0,67	0,12	2,46			2,36	37,3	31,1	12,8	7,1	2,00
20	PZ	275	0,32	20,95	6,40	2,24	0,12	64,93	1,40	0,52	0,11	2,06			0,78	46,0	25,4	13,0	7,2	1,68
21	PZ	275	0,48	21,40	3,93	1,64	0,08	66,09	0,80	0,48	0,22	2,36			1,77	59,4	16,6	7,3	5,0	2,99
22	EPZ ²)	275	0,31	22,32	9,56	1,50	1,99	54,41	3,91	0,58	0,34	3,14	0,46	0,23	1,27					1,23
23	EPZ	275	0,45	24,03	9,51	1,78	0,42	57,09	3,48	0,21	0,35	1,28	0,91	0,04	0,62		1		9	1,44
24	PZ ²)	475	0,00	19,24	5,82	2,88	0,08	65,19	1,26	0,92	0,26	2,39		0,43	1,35	61,8	8,6	10,4	9,0	1,77

1,52	1,47	1,37	0,84	1,28	
9,1	8,4	٤,1	6,5	6'9	
6'6	9′11	10,4	9′11	7'11	
20,7	21,3	18,5	25,0	1,15	
51,0	8'64	54,9	49,3	38,8	
1,77	1,55	1,04	0,56	1,82	
0,02					
2,04	1,94	3,07	2,10	2,39	
0,22	0,21	0,14	0,18	0,17	
62'0	0,70	69'0	0,84	1,86	
1,26	1,32	98'0	1,31	2,22	
64,38	64,47	65,35	20'59	62,33	
20'0	90'0	60'0	60'0	60'0	٦
2,92	1,71	1,92	2,13	2,26	10 28 0 34 h we h 67 % C C
5,65	6,13	5,21	5,86	6,04	0 ,777
20,63	20,52	21,90	21,69	70′12	72 0 86
20'0	0,22	0,13	71,0	0,20	W
375	275	475	275	275	î
Zd	PZ	PZ	PZ	PZ	HOJOJ + CoJ
25	26	27	28	29	2

mögliche" Zusammensetzung errechnet. Der freie Kalk (CaO und Ca(OH)₂) wurde nach Franke ermittelt. (Die Zemente Nr. 1, 22 und 24 enthielten Calciumchlorid und könnten daher zu Einpreßmörtel nicht verwendet werden.)

4. Prüfung von Zementsuspensionen nach den "Vorläufigen Richtlinien"

4.1 Zementsuspensionen ohne Zusatzmittel

Die Zementsuspension (Einpreßmörtel) wurde in einem Zwangsmischer mit waagerechter Mischtrommel und 4 Rührarmen während rd. 4,5 min gemischt.

Der Wasserzementwert wurde so gewählt, daß die Tauchzeit (Konsistenz) im Gerät nach Bild 4 sich im Mittel aus dem 2. und 3. Versuch zu 35 ± 2 sec ergab. Die Tauchzeit wurde ferner eine halbe Stunde nach Beendigung des Mischens zur Beurteilung des Erstarrens und der Verpreßdauer wiederholt. Die Ergebnisse finden sich in Tafel 6. (Nach den "Vorläufigen Richtlinien" werden als Richtwerte für die Tauchzeit von Mörtel für lange, enge Spannglieder etwa 30 sec, für weite Spannglieder etwa 40 sec angegeben. Die Tauchzeit soll nach 30 min noch unter 80 sec liegen.)

Ein Teil der Zementsuspension wurde in zylindrische Blechdosen (Konservendosen) von rd. 10 cm Durchmesser und 11,5 cm Höhe zur Ermittlung des Absetzens (Sedimentierens und Schrumpfens) 10 cm hoch eingefüllt. Die Konservendosen wurden durch Auflegen und Beschweren des zugehörigen Deckels mit Gummifalz dicht verschlossen und bei einer Raumtemperatur von 20 ± 1 °C gelagert. Nach 6 h wurden die Schichthöhe des abgesonderten Wassers und das Absetzen der Füllung in Prozent des unsprünglichen Inhalts gemessen, ferner nach 24 h das endgültige Absetzen. (Da das abgesetzte Sediment bei den meisten Zementen nach 6 h noch keine scharf abgegrenzte Oberfläche erkennen ließ und die Oberfläche durch das überstehende Wasser hindurch eingemessen werden mußte, sind die Messungen nach 6 h nicht sehr genau.) Das Mittel der Messungen in 3 Konservendosen ist in Tafel 6 aufgeführt. Nach 24 h war das nach 6 h bei den meisten Proben auf der Oberfläche abgesonderte Wasser wieder aufgesaugt.

Ein bis zwei Tage vor der Prüfung auf *Druckfestigkeit* wurden die rd. 10 cm hohen Zylinder nach Aufschneiden des Blechmantels durch Absägen einer Scheibe an beiden Flächen auf ungefähr 8 cm gekürzt und die Druckflächen unter ständigem Feuchthalten der Flächen eben geschliffen. Die hergerichteten Zylinder (d = 10 cm, h = 8 cm) lagerten unter feuchten Tüchern. Vor der Prüfung auf Druckfestigkeit im Alter von 7 und 28 Tagen wurde die Rohwichte durch Wägen und Ausmessen bestimmt (Ergebnisse siehe Tafel 6).

Schließlich wurde die Zementsuspension zur Herstellung von Proben für die Frostprüfung in Stahlzylinder eingefüllt (Durchmesser 5 cm, Höhe 12 cm; Raum 235 cm³) und nach Abdecken mil einer Glasplatte bis zur Prüfung auf "Frostbeständigkeit" im Alter von 3 Tagen bei 5 \pm 2 °C gelagert. Die Raumänderung der entformten Proben beim Gefrieren wurde in einem Dilatometer mit Quecksilberbad beobachtet. Die durch das Abkühlen auf

Tafel 6 Prüfung der Zemente nach den "Vorläufigen Richtlinien für das Einpressen von Zementmörtel in Spannkanäle, Fassung Juli 1957"

Zement	Zement-	Güte- klasse	Wasser- zement-	sofort	it in sec	Wasser- absondern nach 6 h	Absetzi 6 h	en nach I 24 h	Rohwichte im Aller von 28 Tagen	7 Tagen	gkeit nach	Räumänderung beim Gefrierer
Nr.	art	Kiasse	wert		Mischen	%	º/o	0/0	kg/dm³	kg/cm²	kg/cm²	Raum-⁰/₀
1	PZ 1)	475	0,50	34	56	0,00	1,35	1,30	1,87	549	621	- 0,16
2	PZ	475	0,47	36	77	1,20	2,25	2,05	1,90	505	603	1
3	PZ	375	0,45	34	46	2,85	3,60	3,60	1,97	488	602	> 0,65
4	PZ	275	0,37	35	66	2,30	3,00	3,05	2,08	511	601	
5	PZ	475	0,47	36	42	1,40	2,30	2,25	1,93	465	535	+ 0,34
6	PZ	375	0,40	36	45	0,00	2,45	2,45	2,02	407	484	_)
7	PZ	275	0,36	35	49	3,20	3,90	4,45	2,11	475	611	
8	PZ	475	0,49	35	50	0,00	1,60	1,55	1,89	433	600	
			0,44	36	56	0,55	1,80	1,75	1,92	479	576	
9	PZ	375	0,44		50		\$1.500.000		100 ph/s		710	> 0,65
10	PZ	275	0,38	35	48	2,20	3,10	3,00	2,05	549	719	11
11	PZ	475	0,46	35	44	1,90	2,60	2,55	1,90	599	674	
12	PZ	275	0,42	36	51	2,15	2,95	2,90	2,00	450	546	<u> </u>
13	PZ	375	0,44	37	48	2,40	3,70	3,60	1,98	485	673	
14	PZ	275	0,43	35	—²)	1,10	2,25	2,10	1,96	450	642	J
15	PZ	275	0,41	39 2)	—²)	1,35	2,05	1,90	2,01	285	361	
	D7	275	0,42	37	60	1,50	2,55	2,50	2,01	356	431	1
16	PZ	375	0,42	35	46	1,55	2,50	2,50	2,00	438	549	II
17 18	PZ PZ	275	0,39	34	45	1,75	2,75	2,75	2,02	452	570	> 0,65
				34	46	2,35	3,00	3,15	2,01	406	509	> 0,65
19	PZ	275	0,40	34	61	2,05	2,90	2,75	2,04	566	682	
20	PZ PZ	275 275	0,38 0,39	33	42	2,20	2,95	2,80	2,02	473	583	

22	EPZ 1)	275	0,39	36	58	0,00	1,15	1,30	1,98	396	575	
23	EPZ	275	0,39	36	56	1,45	2,40	2,30	2,01	476	655	
24	PZ 1)	475	0,46	35	40	0,00	1,60	1,60	1,90	502	618	
25	PZ	375	0,40	36	56	1,30	2,75	2,55	1,96	476	578	> 0,6
26	PZ	275	0,36	35	55	2,90	3,80	3,60	2,07	510	654	
27	PZ	475	0,53	35	48	0,00	1,85	1,85	1,86	381	496	
28	PZ	275	0,37	36	45	3,15	4,30	4,20	2,10	591	732	
29	PZ	275	0,46	36	119	0,00	0,90	0,80	1,90	312	394	1 4

¹⁾ Mit 0,28, 0,36 bzw. 0,67 % CaCl.

Tafel 7 Wiederholte Prüfung der Zemente Nr. 7, 8, 15 und 28 (gleicher Wasserzementwert, verschiedene Lieferungen, unterschiedliche Ablagerung)

		19-10-11-1		1. Prüfung	g; nicht abg	elagert (sieh	e Tafel 3)		Wiederh	olte Prüfung	
Zement Nr.	Zement- art	Güle- klasse	Wasser- zementwert (Tafel 6)	Tauchzeit in sec sofort nach dem Mischen	Absetzen	Rohwichle nach 28 Tagen kg/dm³	Druckfestigkeit nach 28 Tagen kg/cm²	Tauchzeit sofort nach dem Mischen	Absetzen	Rohwichte nach 28 Tagen kg/dm³	Drucklestigker nach 28 Tagen kg/cm²
		2437	Lieferung	aus dem Jahre	1958 (2 Jal	re in luftdi	chi verschlossene	n Behällern gel	agerl)		
7	PZ	275	0,36	35	4,45	2,11	611	33	4.00	2,12	611
8	PZ	475	0,49	35	1,55	1.89	600	34	2,30	1,90	525
15	PZ	275	0,41	39 1)	1,90	2.01	361	16	4,20	2,05	4/3
28	PZ	275	0,37	36	4,20	2,10	732	32	4 20	2,10	758
	· ·	in-real contract of the contra		Lieferung aus	dem Jahre	1960 (7 Ta	ge an der Luft	gelageri)		-	
7	PZ	275	0,36	54	2,40	2,07	563	70	2,80	2,08	570
8	PZ	475	0,49	33	2 00	1 88	487	56	2.20	1,89	612
15	PZ	275	0,41	32	2,40	2.00	426	50	2,75	2,00	456
28	PZ	275	0,37	38	4,05	2,07	629	50	3,70	2,08	700

¹⁾ Vereinzelte größere Klinkerkörner verhinderten das freie Absinken des Tauchzylinders

^{&#}x27;; Vereinzelle größere Klinkerkörner verhinderten das freie Absinken des Tauchzylinders

– 20 °C nach 4 h aufgetretene Raumänderung ergab sich aus der Änderung des Standes des Quecksilbers in einer kalibrierten Kapillare [5].

Mit den meisten Zementen waren gemäß Tafel 6 Proben mit einer Frostdehnung (Raumvergrößerung) entstanden, die größer war als der Meßbereich (+ 0,65 Raum-%).

4.2 Abgelagerte Zemente und Zemente anderer Lieferung

Mit den Zementen Nr. 7 und 28, die am stärksten absetzten, und den Zementen Nr. 8 und 15, deren Absetzen knapp unter dem zulässigen Grenzwert von 2 % lag, wurden die Prüfungen auf Tauchzeit (Fließvermögen), Absetzen und Druckfestigkeit wiederholt, nachdem die Zemente 2 Jahre lang in Juftdicht verschlossenen Behältern gelagert hatten. Bei dieser Wiederholung (1960) wurde der gleiche Wasserzementwert eingehalten wie bei der ersten Prüfung mit den frischen Zementen (1958). Die Ergebnisse sind zusammen mit denen der ersten Prüfung in Tafel 7 aufgeführt.

Auch mit einer Lieferung der Zemente Nr. 7, 8, 15 und 28 aus dem Jahre 1960 wurden die Prüfungen wiederholt (Tafel 7), und zwar sofort nach der Anlieferung und nach dem die Zemente 7 Tage lang in einer Werkshalle in einer Schichtdicke von 4...5 cm an der Luft ausgebreitet lagen.

4.3 Zementsuspensionen mit einem Zusatzmittel

Suspensionen der Zemente Nr. 7 und 17 wur den mit einem Zusatzmittel T geprüft²). Die Ergebnisse dieser Untersuchung enthält Tafel 8

5. Versuchsergebnisse

Die wesentlichsten Ergebnisse, auf die Bezug zu nehmen ist, finden sich in den Tafeln 2, 3, 5, 6 und 7. Ferner sind in Bild 5 alle Zemente mit zunehmender spezifischer Oberfläche nach Blaine aufgeführt, weiter die Oberfläche für die Anteile bis 0,002 mm, die Siebdurchgänge, der Wasserzementwert für eine Tauchzeit von rd. 35 sec, die Schichtdicke des abgesonderten Wassers nach 6 h und das Absetzen der Mörteloberfläche nach 24 h sowie die Druckfestigkeit.

Legt man die Bedingungen zugrunde, die an Einpreßmörtel in den "Vorläufigen Richtlinien" gestellt werden, so ist folgendes herauszustellen:

5.1 Wasserzementwert

Um ein Fließvermögen entsprechend einer Tauchzeit von rd. 35 sec zu erhalten, waren mit den verschieden en Zementen Wasserzementwerte zwischen 0,36 und 0,53 nötig. Mit zunehmender spezifischer Oberfläche nach Blaine, ebenso mit zunehmender Oberfläche der Anteile bis 0,002 mm stieg der Wasseranspruch

²⁾ Das Zusatzmittel T wirkt, wie andere für diesen Zweck angebotene Zusatzmittel, verflüssigend und aufblähend (treibend). Die Treibwirkung beruhl auf der Entwicklung von Wasserstoffbläschen durch Aluminiumpulver in alkalischer Lösung.

im großen und ganzen an. Doch fanden sich auch Zemente, für die diese Beziehung nicht galf, oder Zemente, die bei gleicher spezifischer Oberfläche unterschiedlichen Wasseranspruch hatten (z. B. Zemente Nr. 16 und 7 sowie Zemente Nr. 27 und 5). Mit den gröberen Zementen lag der Wasserzementwert im Mittel bei rd. 0,39, mit den Zementen mittlerer Mahlfeinheit bei rd. 0,41 und mit den feinen Zementen bei rd. 0,47.

5.2 Druckfestigkeit

Die in den "Vorläufigen Richtlinien" verlangten Mindestdruckfestigkeiten von 200 kg/cm² nach 7 Tagen und 300 kg/cm² nach 28 Tagen wurden in jedem Falle überschritten. Dies war auch vorauszusetzen, weil der größte Wasserzementwert der untersuchten Einpreßmörtel mit 0,53 unter dem Wasserzementwert des Normenmörtels nach DIN 1164 mit 0,60 lag und andererseits die Normendruckfestigkeit der verwendeten Zemente sich nach 7 Tagen zu mindestens 235 kg/cm² (Zement Nr. 22) und nach 28 Tagen zu mindestens 368 kg/cm² (Zement Nr. 19) ergeben hatte. Mit den für die festgelegte Tauchzeit (35 sec) nötigen Wasserzementwerten konnten also die in den "Vorläufigen Richtlinien" verlangten Festigkeiten sicher erreicht werden.

5.3 Verhalten beim Gefrieren

Die Bedingung, daß der 3 Tage alte Einpreßmörtel sich beim Gefrieren nicht ausdehnen darf, war mit keinem der Zemente, die frei von Calciumchlorid waren, zu erfüllen. Die kleinste Frostdehnung fand sich zu 0,34 Raum-%. Die Dehnung war aber überwiegend größer als 0,65 Raum-%, selbst bei den rasch erhärtenden Portlandzementen der Güteklasse Z 475. (Die als Beispiel in Tafel 8 angeführten Mörtel, die ein verflüssigendes und porenbildendes Zusatzmittel enthielten, dehnten sich beim Gefrieren der 3 Tage alten Proben nicht aus. Bei hier nicht aufgeführten Untersuchungen mit dem gleichen Zusatzmittel und Zement Nr. 17 war die Wirkung des Zusatzmittels auf die Frostbeständigkeit bei verschiedenen Lieferungen des Zements verschieden ausgefallen.)

5.4 Einflüsse auf das Absetzen und Wasserabsondern

Bei den vorliegenden Untersuchungen galt es vor allem festzustellen, ob das unerwünschte Absetzen und Wasserabsondern von bestimmten Zementeigenschaften abhängen. Als solche sind vor allem die Größe des Wasseranspruchs, die chemische Zusammensetzung und die Mahlfeinheit in Betracht zu ziehen.

5.4.1 Wasserzementwert (Wasseranspruch)

Die in Bild 5 aufgezeichneten Wasserzementwerte sowie die Größe des Absetzens und Wasserabsonderns lassen erkennen, daß bei etwa gleicher spezifischer Oberfläche jene Zemente in der Regel weniger absetzen und Wasser absondern, die einen größeren Wasserzusatz (Wasserzementwert) benötigen. Dies gilt sowohl im Bereich der grob als auch fein gemahlenen Zemente. Weiter ergibt sich aus Bild 5 in groben Zügen, daß mit zunehmender spezifischer Oberfläche das Absetzen und Wasserabsondern kleiner wurden, obwohl der Wasserzementwert ebenfalls anstieg. Man kann dies damit erklären, daß Zemente, die unter diesen Verhältnissen für eine gleiche Tauchzeit mehr Wasser

Tafel 8 Wirkung von Zusätzen auf die Frostbeständigkeit von Einpreßmörteln

Zement Nr.	Zement- art	Güle- klasse	Zusatzstoff	Zusalzmenge	Wasser- zemenlwerl	Tauchzeit in sec sofort nach dem Mischen	Rohwichle nach 28 Tagen	no 7 Tagen	estigkeit ich 28 Tagen	Raumänderung beim Gefrieren Raum-%
				Gew%			kg/dm³	kg/cm²	kg/cm²	Kaum-%
7	PZ	275	1) —	-	0,36	35	2,11	475	611	> + 0,65
			Kalkhydrat	2,0	0,36	41	2,10		581	> + 0,65
			Zusatz- mittel T	1,0	0,36	22	2,07		586	- 0,13
17 (1958)	PZ		η -	-	0,41	35	2,00	438	549	> + 0,65
17 (1960)		Z 375	Zusatz- mittel T	1,0	0,37	36	1,94	344	410	- 0,14

[,] siene deal fale

Tafel 9 Einfluß des Erstarrens von Zement auf das Absetzen von Zementsuspensionen

COURT SCHOOL	A Proposition Contractor	Feinheit cm²/g	E	Temperatur von 40 °C		
Zement Nr.	Absetzen %		Beginn	Ende	Erstarrungszeit	erreicht nach
			wenig absetzende Zemer	ile		
9	1,80	4290	3 h 00 m	4 h 15 m	1 h 15 m	4 h 10 m
15	1,90	2750	3 h 45 m	5 h 35 m	1 h 50 m	5 h 35 m
29	0,80	4030	2 h 15 m	3 h 40 m	1 h 25 m	3 h 05 m
Millel	1,50	3690	3 h 00 m	4 h 30 m	1 h 30 m	4 h 15 m
			stark absetzende Zemer	nle		
7	4,45	2730	3 h 40 m	5 h 35 m	1 h 55 m	4 h 30 m
26	3,60	2930	3 h 40 m	5 h 30 m	1 h 50 m	4 h 15 m
28	4,20	2600	4 h 00 m	5 h 45 m	1 h 45 m	4 h 50 m
Millel	4,10	2750	3 h 45 m	5 h 35 m	1 h 50 m	4 h 30 m

benötigen, dieses mechanisch oder chemisch auch verhältnismä-Big stark festhalten.

Doch finden sich auch erhebliche Abweichungen von dieser Tendenz.

5.4.2 Chemische Zusammensetzung

Sucht man nach dem Einfluß bestimmter Stoffe, wie Alkali (K_2O+Na_2O), SO_3 oder einzelne Klinkerminerale, so findet man allgemein (Tafel 5 und Bild 5), daß sowohl Zemente mit hohem Gehalt als auch niederem Gehalt einzelner Bestandteile ein starkes Absetzen zur Folge hatten. Auffallend ist, daß Zement Nr. 29 (Feinheit 4030 cm²/g) mit dem geringsten Absetzen (0,80 %) und Wasserabsondern (0 %) sich durch einen verhältnismäßig hohen C_3A -Gehalt (11,7 %) und hohen Alkaligehalt (2,03 %) auszeichnete, wogegen Zement Nr. 3 mit nahezu gleicher Feinheit (4340 cm²/g), aber niederem C_3A -Gehalt (6,4 %) und niederem Alkaligehalt (0,89 %) ein besonders hohes Absetzen (3,60 %) und Wasserabsondern (2,85 %) lieferte.

Werden die 7 Zemente Nr. 8, 9, 10, 13, 14, 17, 18 mit niederem Alkaligehalt (bis rd. 0,6%) mit den 7 Zementen Nr. 5, 6, 11, 15, 16, 24, 29 verglichen, die einen Alkaligehalt über 1,0% aufwiesen, so ergeben sich für diese beiden Gruppen im Mittel folgende Unterschiede:

K₂O+Na₂O %	C ₃ A %	Feinheit cm²/g	Wasserabsondern %	Absetzen %
	Zemente	e mit niederen	n Alkaligehalt	
0,47	8,7	3840	1,4	2,5
	Zemer	nte mit hohem	Alkaligehalt	
1,47	10,6	3780	0,9	2,0

Obwohl sich beide Gruppen im Mittel durch etwa gleiche Feinheit, jedoch sehr unterschiedlichen Alkali- und C₃A-Gehalt auszeichneten, unterscheiden sie sich im Wasserabsondern und Absetzen nur wenig. Mit dem höheren Alkali- und C₃A-Gehalt ist im Mittel wohl ein etwas geringeres Absetzen und Wasserabsondern verbunden. Praktisch ist dieser Unterschied jedoch ohne besondere Bedeutung, vor allem auch, weil diese Beziehung nicht für jeden der untersuchten Zemente gilt. Man meint bei solchen Vergleichen – z. B. auch mit dem C₃S-Gehalt –, da und dort den Ansatz für eine Beziehung zu haben. Wenn jedoch alle Zemente in die Betrachtung einbezogen wurden, erweist sich eine allgemeine Folgerung als nicht berechtigt, auch nicht, wenn man den ungefähren Einfluß unterschiedlicher Mahlfeinheit auf das Absetzen berücksichtigt.

5.4.3 Erstarren

Da der zeitliche Verlauf der Hydratation, z.B. gekennzeichnet durch das Erstarren eines Zements, unter sonst gleichen Verhältnissen irgendwie von seiner chemischen Zusammensetzung und Mahlfeinheit beeinflußt wird, wurde auch untersucht, ob nicht ein Zusammenhang zwischen den Erstarrungszeiten und dem zu erwartenden Absetzen der Zemente besteht.

In Tafel 9 sind die Erstarrungszeiten nach DIN 1164 und die für einen Temperaturanstieg der Zementsuspension bis auf 40 °C ver-

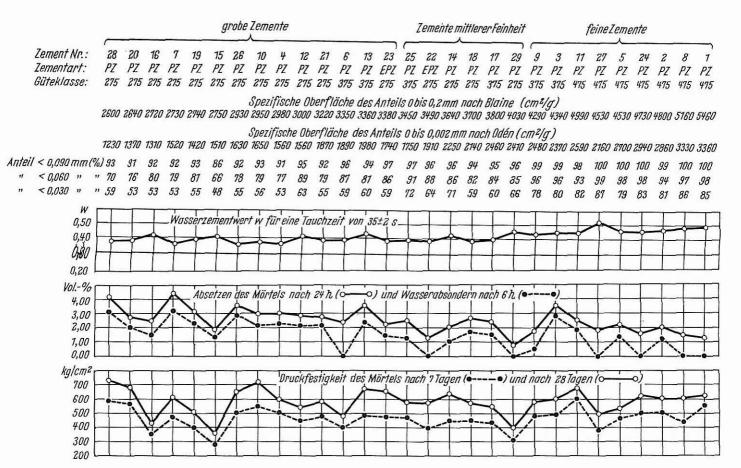


Bild 5 Einpreßmörtel (Zementleime) aus verschiedenen Zementen

strichene Zeit für die wenig absetzenden Zemente Nr. 9, 15 und 29 und die stark absetzenden Zemente Nr. 7, 26 und 28 gegenübergestellt. (Die Temperaturentwicklung wurde in Thermosflaschen mit Thermoelementen ermittelt.) Es zeigte sich, daß die wenig absetzenden, allerdings auch feineren Zemente im Durchschnitt früher und rascher erstarrten. Vergleicht man die durchschnittlichen Erstarrungszeiten der 8 Zemente, deren Absetzen kleiner als 2,0 Raum-% war (Zemente Nr. 1, 8, 9, 15, 22, 24, 27 und 29), mit denen der anderen 21 Zemente, so tritt diese Beziehung noch deutlicher hervor. Der Erstarrungsbeginn der wenig absetzenden Zemente lag im Durchschnitt bei 2 h 35 min und die Erstarrungszeit bei 1 h 25 min gegenüber 3 h 30 min bzw. 1 h 40 min bei den stärker absetzenden Zementen.

Man kann also folgern, daß das Absetzen um so kleiner ausfällt, je früher und rascher ein Zement bei der Prüfung nach DIN 1164 erstarrt. Aber auch das Erstarren eines Zements wird durch eine Reihe immer sehr komplex vorhandener Zementeigenschaften beeinflußt, so daß man hieraus nicht ableiten kann, welche Einflußgrößen im einzelnen auch für das Absetzen von besonderer Bedeutung sind.

5.4.4 Mahlfeinheit

Die groben Zemente, die Zemente mittlerer Feinheit und die feinen Zemente lieferten Zementsuspensionen, die sich im Absetzen wie folgt unterschieden:

	< 2,0 %	2,0 3,0 %	> 3,0 %		
14 grobe Zemente	Nr. 15	Nr. 20, 16, 10, 12, 21, 6, 23	Nr. 28, 7, 19, 26, 4, 13		
6 Zemente mittlerer Feinheit	Nr. 22, 29	Nr. 25, 14, 18, 17	-		
9 feine Zemente	Nr. 9, 27, 24, 8, 1	Nr. 11, 5, 2	Nr. 3		

Im großen und ganzen kann hiernach, wie auch aus der Darstellung in Bild 5, gefolgert werden, daß Zemente mit zunehmender Feinheit im allgemeinen weniger zum Absetzen neigen. Doch finden sich sowohl unter den groben Zementen solche mit mäßigem Absetzen als auch unter den feineren solche, die ein ebenso großes oder größeres Absetzen (Raumverminderung) lieferten wie die groben Zemente.

Vergleicht man die spezifische Oberfläche der Korngruppe bis 0,002 mm, so ist nach Bild 5 zu erkennen, daß mit deren Zunahme (1230 cm²/g bis 3360 cm²/g) im großen und ganzen ebenfalls eine Verminderung des Absetzens einhergeht, wie dies auch für die gesamte Oberfläche des Zements feststellbar ist. Doch gilt diese Beziehung wiederum für eine größere Anzahl von Zementen nicht. Auch eine Beziehung zwischen dem Oberflächenanteil der Korngruppe bis 0,002 mm und dem Absetzen konnte nicht festgestellt werden.

Es erscheint also nicht möglich, in jedem Falle von der spezifischen Oberfläche (Feinheit) von Zementen vergleichsweise auf das zu erwartende Absetzen des Einpreßmörtels zu schließen.

5.5 Einfluß der Ablagerung des Zements

5.5.1 Fließvermögen (Tauchzeit)

Ein Ablagern von 4 Zementen während 2 Jahren in luftdicht verschlossenen Behältern (siehe Tafel 7) verkürzte bei den Zementen Nr. 7, 8 und 28 die Tauchzeit geringfügig (etwas günstigeres Fließvermögen), bei Zement Nr. 15 dagegen erheblich (von 39 sec auf 15 sec).

Mit den 7 Tage lang an der Luft ausgebreiteten frischen Zementen (Nr. 7, 8, 15 und 28) wurde dagegen eine erheblich größere Tauchzeit erhalten. Bemerkenswert ist auch, daß bei den Lieferungen 1958 und 1960 des Zements Nr. 7 die Tauchzeit bei gleichem Wasserzementwert sehr unterschiedlich ausfiel (35 sec bzw. 54 sec).

5.5.2 Absetzen

Das 2jährige Lagern in luftdichten Behältern bewirkte zum Teil eine Vergrößerung des Absetzens. Dagegen blieb eine 7tägige Lagerung der Zemente an der Luft ohne praktisch nennenswerten Einfluß auf das Absetzen.

Diese Vergleiche zeigen vor allem, daß eine mehrtägige Lagerung der Zemente an der Luft die Tauchzeit bzw., den Wasseranspruch für ein bestimmtes Fließvermögen wesentlich erhöhen kann, das Absetzen jedoch nicht wesentlich verändert und daß verschiedene Lieferungen desselben Zements sich hinsichtlich Tauchzeit und Absetzens deutlich unterscheiden können.

5.6 Verflüssigendes und gasbildendes Zusatzmittel

Bei den Versuchen mit den Zementen Nr. 7 und 17, mit denen ohne Zusatzmittel eine Raumvergrößerung von mehr als 0,65% entstand, erkennt man, daß mit dem Zusatzmittel T beim Gefrieren der 3 Tage alten Zylinder eine Raumvergrößerung unterblieb; es stellte sich sogar eine Raumverminderung von 0,13% bzw. 0,14% ein.

Mit allen Zementen ohne Zusatzmittel entstanden dagegen Mörtel, die im Sinne der "Vorläufigen Richtlinien" "nicht frostbeständig" waren.

6. Zusammenfassung

Mit der Untersuchung von 29 Zementen wurde der Frage nachgegangen, inwieweit die in den "Vorläufigen Richtlinien" [3] aufgeführten Gütemerkmale des Einpreßmörtels durch bestimmte Eigenschaften eines Zements beeinflußt werden.

Für die Zemente wurden über die durch die Normenprüfung erfaßten Eigenschaften hinaus die spezifische Oberfläche, der Kornaufbau bis in den feinsten Bereich und die chemische Zusammensetzung bestimmt sowie der Gehalt an Klinkermineralen errechnet

Als Gütemerkmale der mit gleichem Fließvermögen (Tauchzeit rd. 35 sec) hergestellten reinen Suspensionen wurden nach den "Vorläufigen Richtlinien" der Wasseranspruch (Wasserzementwert), die Druckfestigkeit, der Widerstand beim Gefrieren und das Absetzen (Wasserabsondern und Schrumpfen) geprüft.

Bei der Untersuchung der Abhängigkeit der Eigenschaften des Einpreßmörtels von denen des Zements wurde folgendes festgestellt:

6.1 Wasserzementwert und Fließvermögen

Für die 29 Zemente lag der Wasserzementwert zwischen 0,36 und 0,53; also in verhältnismäßig weiten Grenzen.

Der Wasseranspruch stieg im großen und ganzen an, wenn die Feinheit der Zemente von 2600 cm²/g bis 5460 cm²/g zunahm. Doch fand sich eine ganze Reihe von Zementen, für die diese Beziehung nicht galt.

6.2 Druckfestigkeit

Mit dem für durchschnittliches Fließvermögen (Tauchzeit 35 sec) benötigten Wasserzementwert konnte die für Einpreßmörtel geforderte Druckfestigkeit sicher erreicht werden. (Die niederste 28 Tage-Normendruckfestigkeit der Zemente betrug 368 kg/cm².)

6.3 Widerstand gegen Gefrieren

Die Bedingung, daß die 3 Tage bei + 5 °C erhärtete Zementsuspension ihren Raum beim Gefrieren nicht vergrößert, wurde mit keinem Zement erfüllt. Eine Zementsuspension, die mit einem porenbildenden Zusatz hergestellt wurde, vergrößerte beim Gefrieren ihren Raum nicht.

6.4 Absetzen

Das größte Absetzen (Raumverminderung) während des Erstarrens wurde nach 24 h zu 4,4 % und das kleinste zu 0,8 % erhalten. Etwa ähnlich unterschieden sich die Zemente nach der Menge des nach 6 h abgesonderten Wassers. Jede der Zementsuspensionen aus den 29 Zementen setzte also mehr oder weniger stark ab.

Feinheit. Die feiner gemahlenen Zemente neigten im allgemeinen weniger zum Absetzen.

Werden in den drei Feinheitsgruppen (siehe 3.2) die Zemente ausgeschieden, deren Absetzen um mehr als \pm 50 % vom Gruppenmittel abweicht, d. s. der Zement mittlerer Feinheit Nr. 29 (Absetzen 0,8 %) und der feine Zement Nr. 3 (Absetzen 3,6 %), so erhält man das Absetzen für

die groben Zemente (2950 cm²/g) zu 1,9 bis 4,4 %,

im Mittel zu 3,0 %, die Zemente mittlerer Feinheit (3700 cm²/g) zu 1,3 bis 2,7 %, im Mittel zu 2,2 % und die feinen Zemente (4700 cm²/g) zu 1,3 bis 2,5 %,

im Mittel zu 1,9 %.

Man erkennt aber, daß sowohl grob gemahlene Zemente vorkamen, die wenig absetzten, als auch fein gemahlene Zemente, die stark absetzten. Es erscheint nicht möglich, weder von der spezifischen Oberfläche eines Zements noch von der Kornverteilung oder dem Anteil der Korngruppe bis 0,002 mm allgemein auf das zu erwartende Absetzen eines Einpreßmörtels zu schlie-Ben.

Chemische Zusammensetzung. Eine allgemein sich abzeichnende Beziehung zwischen dem Gehalt bestimmter Stoffe (z. B. C_sA, Alkali, SO₃ usw.) und der Neigung der Zementsuspensionen mehr oder weniger abzusetzen, konnte nicht gefunden werden.

Erstarrungszeiten. Das Absetzen fiel im Durchschnitt um so kleiner aus, je rascher die Zemente nach DIN 1164 erstarrten. (Weil der Erstarrungsverlauf auch von der Temperatur beeinflußt wird und weil der Mörtel bei der Prüfung nach den "Vorläufigen Richtlinien" mit einer anfänglichen Temperatur von + 20 °C bis zum Erstarrungsende im allgemeinen wärmer wird als in engen Spannkanälen, dürfte dort der Mörtel im ganzen mehr zum Absetzen neigen als bei der Prüfung.)

6.5 Wiederholte Prüfung eines Zements

Die Suspensionen der Zemente, die 7 Tage lang an der Luft in einem trockenen Raum ausgebreitet waren, benötigten für gleiches Fließvermögen mehr Wasser als die frischen Zemente. Das Absetzen wurde praktisch nicht beeinflußt.

Verschiedene Lieferungen eines Zements können sich unter sonst aleichen Verhältnissen hinsichtlich Fließvermögens unterscheiden.

SCHRIFTTUM:

- Koenig, H. W.: Neuzeitliche Einpreßtechnik. Die Wasserwirtschaft 42 (1952) H. 4, S. 120/132.
 - Maag, E., und A. Brun: Injektionsverfahren als Baumethode. Schweizerische Bauzeitunng 71 (1953) Nr. 37, S. 1/4.
 - Koenig, H. W.: Einpreßtechnik. Technische Milteilungen, Haus der Technik, Essen 49 (1956) H. 9, S. 416/424.
- [2] Neumann, H.: Das Sedimentvolumen als Kenngröße für die Untersuchung von Injektionszementen. Zement-Kalk-Gips 11 (1958) H. 8, S. 339/345.
- [3] Vorläufige Richtlinien für das Einpressen von Zementmörtel in Spannkanäle (Fassung Juli 1957). Bestimmungen des Deutschen Ausschusses für Stahlbeton. Berlin 1960; Verlag Wilh. Ernst & Sohn; ebenso Beton- und Stahlbetonbau 52 (1957) H. 12, S. 292/294.
- [4] Harkort, H. J.: Die Bestimmung der spezifischen Oberfläche von Pulvern, insbesondere von Portlandzement. Forschungsarbeiten aus dem Straßenwesen. 1. Aufl. Volk und Reich Verlag, Berlin 1939, 5. 42.
- [5] Röhnisch, A.: Einwirkung von Frost auf den Einpreßmärtel von Spanngliedern. Beton- und Stahlbetonbau 50 (1955) H. 3, S. 89/93.