Christoph Müller, Ingmar Borchers, Eberhard Eickschen, Düsseldorf

Erfahrungen mit AKR-Prüfverfahren: Hinweise zur Ableitung praxisgerechter Bewertungskriterien für Performance- und WS-Grundprüfungen

Experience with ASR test methods: advice on obtaining practical evaluation criteria for performance testing and aggregate testing

81

Inhaltsübersicht

Mit AKR-Performance-Prüfungen kann die Alkaliempfindlichkeit von Betonen für Fahrbahndecken der Feuchtigkeitsklasse WS bewertet werden. Im vorliegenden Beitrag wird der Bewertungshintergrund für den "60 °C-Betonversuch mit Alkalizufuhr von außen" vorgestellt. Es wurden verschieden stark geschädigte Betonfahrbahndecken in Schadenskategorien eingestuft, daraus Bohrkerne entnommen und mit dem 60 °C-Betonversuch mit Alkalizufuhr von außen geprüft. Die Prüfungen wurden mit einer 3%igen und mit einer 10% igen Natriumchlorid-Lösung (NaCl) durchgeführt. Für beide Fälle werden Bewertungskriterien hergeleitet. Zur Herleitung der Bewertungskriterien wurden außerdem die tiefenabhängigen Gehalte wasserlöslicher Chloride in Fahrbahndeckenbetonen und in Laborprüfkörpern nach Abschluss von AKR-Performance-Prüfungen verglichen. Zusätzlich wurden die Ergebnisse von Vergleichsversuchen des 60 °C-Betonversuchs mit der Klimawechsellagerung jeweils mit Alkalizufuhr von außen herangezogen. Die Bewertungskriterien können gleichermaßen für AKR-Performance-Prüfungen (Bewertung eines Betons) wie für WS-Grundprüfungen (Bewertung einer Gesteinskörnung) angewendet werden.

1 Einleitung

Erste Schäden infolge einer Alkali-Kieselsäure-Reaktion (AKR) traten in Deutschland Ende der 1960er Jahre in Schleswig-Holstein u. a. an Industrieanlagen, Kaimauern und Brücken auf [1]. Das Regelwerk zur Vermeidung von AKR-bedingten Schäden an Betonbauwerken, die Alkali-Richtlinie des Deutschen Ausschusses für Stahlbeton (DAfStb), wurde seitdem konsequent weiterentwickelt. Mit der in 2012 gültigen Alkali-Richtlinie einschließlich der 1. und 2. Berichtigung (April 2010 und April 2011) liegen deskriptive Regeln vor, mit denen in allen Bereichen des Hochund Ingenieurbaus (Feuchtigkeitsklassen WO, WF, WA) sicher gebaut werden kann. Seit der ersten Fassung der Alkali-Richtlinie von 1974 [2] wurde sie mehrfach erweitert, sodass sie mit der Zeit schwer verständlich wurde. Die Richtlinie wird derzeit redaktionell überarbeitet, sodass sie entsprechend der Struktur europäischer Normen aufgebaut sein wird und damit in der Praxis wieder besser verstanden werden kann.

Ab 1996 zeigten sich erstmals AKR-bedingte Schäden an Betonfahrbahndecken auf Bundesautobahnen in Südwestdeutschland. Mit weiteren Schäden auf Autobahnen in Mitteldeutschland begann die Entwicklung von AKR-Performance-Prüfverfahren. Die Entwicklung der Verfahren folgte der Erkenntnis, dass folgende Betonbauteile durch Tausalz-/Taumitteleinwirkung und hohe dynamische Lasten aus Verkehr besonders hohen Beanspruchungen ausgesetzt sind und mit den gängigen deskriptiven Regeln nicht mehr angemessen behandelt werden [3]:

Abstract

The alkali reactivity of concretes for road pavements in the WS moisture class can be evaluated with ASR (alkali-silica reaction) performance tests. This article presents the background to the evaluation of the "60 °C concrete test with external supply of alkalis". Concrete road pavements that had been damaged to differing extents were classified into damage categories. Drill cores were then taken from them and tested with the 60 °C concrete test with external supply of alkalis. The tests were carried out with 3 % and 10 % sodium chloride (NaCl) solutions. Evaluation criteria were derived for both cases. The evaluation criteria were also derived by comparing the depth-dependent levels of water-soluble chlorides in concrete road pavements and in laboratory test specimens after conclusion of the ASR performance tests. The results of comparison trials of the 60 °C concrete test with the cyclic climate storage – in each case with external addition of alkalis - were also used. The evaluation criteria can be applied equally for ASR performance testing (evaluation of a concrete mixture) and for aggregate testing (evaluation of an aggregate).

1 Introduction

Initial cases of damage due to alkali-silica reactions (ASR) appeared in Germany at the end of the 1960s in Schleswig-Holstein in industrial plants, quay walls and bridges [1]. The body of rules for avoiding damage in concrete structures caused by ASR, the Alkali Guidelines issued by the DAfStb (German Committee for Structural Concrete), have been consistently revised since then. Descriptive rules with which it is safe to build in all areas of build-ing construction and civil engineering (moisture classes WO, WF, WA) are available in the form of the 2012 Alkali Guidelines, including the 1st and 2nd revisions (April 2010 and April 2011). The first version of the Alkali Guidelines of 1974 [2] has been extended several times with the result that with time they became difficult to understand. The Guidelines are currently being re-edited so that they correspond to the structure of European standards and will be easier to understand in practice.

The first cases of damage due to ASR in concrete road pavements appeared from 1996 in federal motorways in south-west Germany. The development of ASR performance test methods began when further cases of damage in motorways appeared in central Germany. The development of the methods followed the finding that the following concrete structural elements were subject to particularly severe stresses due to the effects of de-icing salt / de-icing chemicals and heavy dynamic traffic loads and were no longer dealt with appropriately by the current descriptive rules [3]: concrete roads of the SV and I to III construction classes as

- specified in the RStO
- airfields made of concrete.

Betonfahrbahnen der Bauklassen SV und I bis III nach RStOFlugbetriebsflächen aus Beton.

Um die Alkaliempfindlichkeit von Betonen für diese Bauteile untersuchen zu können, wurde an der Bauhaus-Universität Weimar (FIB) und im Forschungsinstitut in Düsseldorf (FIZ) jeweils ein Verfahren entwickelt: Betonversuch mit "Klimawechsellagerung" [4] und der "60 °C-Betonversuch mit Alkalizufuhr von außen" [5, 6]. Beide Verfahren führen zu einer vergleichbaren Bewertung identischer Betone und sind vom Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS) anerkannt [7, 8].

Die Festlegung der Bewertungskriterien muss unabhängig vom verwendeten Prüfverfahren zwei wesentlichen Anforderungen genügen:

Zielsichere Vermeidung von AKR-Schäden

Erhalt der Wettbewerbsfähigkeit der Betonbauweise.

Um dem letztgenannten Aspekt zu genügen, müssen nicht nur die Fälle erfasst und zukünftig ausgeschlossen werden, die nachweislich zum Schaden geführt haben. Es muss auch weiterhin möglich sein, mit den Betonrezepturen bzw. Gesteinskörnungen zu bauen, die sich in der Praxis nachweislich bewährt haben.

Für den "60 °C-Betonversuch mit Alkalizufuhr von außen" wurde zunächst ein Grenzwert von 0,5 mm/m nach zehn Zyklen der Wechsellagerung bei Prüfung mit einer 10 %igen NaCI-Lösung festgelegt [5, 6]. Mithilfe dieses Grenzwerts soll zwischen Betonen unterschieden werden, mit denen über die Nutzungsdauer der Betonfahrbahndecke mit Schäden bzw. keinem Schaden infolge einer AKR zu rechnen ist. Das BMVBS wird in 2013 über ein neues Allgemeines Rundschreiben Straßenbau (ARS) eine "WS-Grundprüfung" einführen. Mit dieser Prüfung soll die Eignung grober Gesteinskörnungen für Fahrbahndecken aus Beton der Feuchtigkeitsklasse WS beurteilt werden . Wesentlicher Bestandteil ist der "WS-Betonversuch", mit dem eine grobe Gesteinskörnung in einer pessimalen Betonzusammensetzung entweder mit dem "60 °C-Betonversuch mit Alkalizufuhr von außen" oder mit der Klimawechsellagerung untersucht werden soll. Auch für diese Anwendung der Betonversuche bedarf es praxisgerechter Bewertungskriterien.

2 Untersuchungsziel

Ziel der Untersuchungen war die Herleitung praxisgerechter Kriterien für die Bewertung der Alkaliempfindlichkeit von Betonen bzw. Gesteinskörnungen zur Verwendung in der Feuchtigkeitsklasse WS für den "60 °C-Betonversuch mit Alkalizufuhr". Es wurden Bohrkerne aus verschieden stark geschädigten Betonfahrbahndecken untersucht. Die Bohrkerne und zusätzlich Laborbetone wurden jeweils mit einer 3 %igen und mit einer 10 %igen Natriumchlorid-Lösung (NaCl) geprüft, um einen Zusammenhang zwischen den Ergebnissen bei Verwendung der beiden NaCl-Konzentrationen und der Zustandsbeschreibung von Fahrbahndecken durch Schadenskategorien ableiten zu können. Des Weiteren wurden Betone von zwei Fahrbahndecken durch Laborbetone nachgestellt und geprüft. Die Laborbetone wurden mit aktuellen Lieferungen der Ausgangsstoffe der Fahrbahndeckenbetone hergestellt. Schließlich wurden für identisch zusammengesetzte Betone die Ergebnisse der 60 °C-Betonversuche mit einer 3 %igen bzw. einer 10 %igen NaCl-Lösung mit den Ergebnissen der Klimawechsellagerung verglichen. Ergänzende Informationen lieferte der Vergleich von Chloridprofilen an den Probekörpern eines Betons nach Abschluss der AKR-Performance-Prüfungen mit dem Chloridprofil von Bohrkernen aus Fahrbahndecken und von einem Laborbeton nach der Klimawechsellagerung.

3 Untersuchungen

3.1 Zustandsbeschreibung von Fahrbahndecken durch Schadenskategorien

Der Zustand AKR-geschädigter Fahrbahndecken aus Beton kann durch drei Schadenskategorien nach Tafel 1 beschrieben werden [9]. Sie wurden aufgestellt, um angemessene Instandsetzungsmaßnahmen zur baulichen Erhaltung AKR-geschädigter Fahrbahndecken aus Beton festlegen zu können. Wenn in einer Fahrbahndecke Alkalihydroxide mit alkaliempfindlichen GesteinskörThe Bauhaus University Weimar (FIB) and the Research Institute in Duesseldorf (FIZ) each developed a method for investigating the alkali reactivity of concretes for these structural elements, namely the concrete test with "cyclic climatic storage" [4] and the "60 °C concrete test with external supply of alkalis" [5, 6]. The two methods lead to comparable evaluation of identical concretes and are recognized by the BMVBS (Federal Ministry of Transport, Building and Urban Development) [7, 8].

Regardless of the test method used the establishment of the evaluation criteria must satisfy two important criteria:

avoidance of ASR damage

retention of the competitiveness of concrete construction.

In order to satisfy the latter aspect it is necessary not just to account for and in future exclude the cases that have demonstrably led to damage. It must also continue to be possible to build with the concrete mixture and aggregates that have proved successful in practice.

Initially, a limit of 0.5 mm/m after ten cycles of the cyclic storage was set for the "60 °C concrete test with external supply of alkalis" when testing with a 10 % NaCl solution [5, 6]. By using this limit it should be possible to differentiate between those concretes for which damage due to an ASR is to be expected during the working life of the concrete road pavements and those for which no damage is expected. The BMVBS is introducing a WS aggregate test in 2013 through a new General Road Construction Circular. This test is intended to assess the suitability of coarse aggregates for road pavements made with concrete of the WS moisture class. One important component is the "WS concrete test" with which a coarse aggregate is to be investigated in an unfavourable concrete composition either with the "60 °C concrete test with external supply of alkalis" or with cyclic climate storage. Evaluation criteria that meet practical requirements are also needed for this application of the concrete tests.

2 Purpose of the investigation

The purpose of the investigation was to derive practical criteria for the "60 °C concrete test with external supply of alkalis" for evaluating the alkali reactivity of concretes and aggregates for use in the WS moisture class. Drill cores taken from concrete road pavements that had been damaged to differing extents were examined. The drill cores and additional laboratory concretes were each tested with 3 % and 10 % sodium chloride solutions (NaCl) in order to derive a relationship between the use of the two NaCl concentrations. Moreover, the relation between the test results and the damage categories, which describe the condition of the road pavements, should be established. The concretes from two road pavements were also simulated by laboratory concretes and tested. The laboratory concretes were produced with current charges of concrete constituents for the road pavements. Finally, the results of the 60 °C concrete test with 3 % and 10 % NaCl solutions were compared with the results of the cyclic climate storage for concretes with identical compositions. Additional information was provided by comparison of the chloride profiles in the test specimens made from a concrete after conclusion of the ASR performance tests with the chloride profiles of drill cores from road pavements and from a laboratory concrete after cyclic climate storage.

3 Investigations 3.1 Description of the condition of road pavements by damage category

The condition of road pavements damaged by ASR can be described by three damage categories as shown in Table 1 [9]. They were established in order to be able to specify appropriate repair measures for structural maintenance of concrete road pavements damaged by ASR. When alkali hydroxides react with alkali-reactive aggregates in a road pavement the first sign is usually discolouration of the transverse joint and joint intersection areas. In this condition the road pavement may possibly exhibit shrinkage cracks but no ASR-induced cracks. Road pavements with these features are assigned to damage category I. If the ASR progresses

Schadenskategorie Damage category	Schadensmerkmale Damage features
I	 Verfärbung im Bereich der Querfugen/Fugenkreuze (i. A. beginnend im Fugenkreuz) discolouration in the area of the transverse joints / joint intersections (generally starting at the joint intersection) keine über Schwindrisse hinausgehende Rissbildung no cracking beyond shrinkage cracks
II	 ausgeprägte Verfärbung im Bereich der Fugen marked discolouration in joint areas Rissbildungen in Fugenkreuzbereichen cracking in the joint intersection areas beginnende bis ausgeprägte Netzrissbildung incipient to marked cracking ggf. Längs- und Querrisse an den Querfugen possible longitudinal and transverse cracks at the transverse joints ggf. zusätzliche Längsrissbildung in Rüttelgassen, noch kein Substanzverlust possible additional longitudinal cracking in vibration channels, but still no loss of substance
III	 ausgeprägte Verfärbung im Bereich der Fugen marked discolouration in the joint areas sehr ausgeprägte Rissbildung (häufig mit Verfärbungen) very marked cracking (often with discolouration) ggf. Kantenschäden und/oder Eckabbrüche possible edge damage and/or broken corners ggf. Substanzverlust, z. B. Verschotterung possible loss of substance, e.g. crumbling

Tafel 1: Zuordnung der Merkmale zu Schadenskategorien nach [9] Table 1: Allocation of the features to damage categories as defined in [9]

nungskörnungen reagieren, verfärbt sich i. d. R. zunächst der Bereich der Querfugen und der Fugenkreuze. In diesem Stadium weist die Fahrbahndecke evtl. Schwindrisse, aber keine AKR-induzierten Risse auf. Fahrbahndecken mit diesen Merkmalen werden der Schadenskategorie I zugeordnet. Schreitet die AKR weiter fort, dann bilden sich Risse. Eine beginnende und ausgeprägte Netzrissbildung sowie ausgeprägte Verfärbungen im Fugenbereich kennzeichnen die Schadenskategorie II. Die Risse schwächen das Betongefüge und durch die mechanische Verkehrsbelastung brechen die Kanten der Querfugen. Dieser Zustand wird mit der Schadenskategorie III beschrieben, bei der Substanzverlust auftritt und es zur Verschotterung der Querfuge kommt.

3.2 Bohrkerne aus Fahrbahndecken

Aus Fahrbahndecken mehrerer deutscher Autobahnen in Betonbauweise wurden Bohrkerne (Ø 15 cm/Höhe rd. 30 cm) entnommen. Die Fahrbahndecken wurden visuell bei einer Streckenbesichtigung beurteilt und einer Schadenskategorie zugeordnet. In Tafel 2 sind wesentliche Informationen zu den Bohrkernen, den Fahrbahndecken und deren Schadenskategorie zusammengefasst. Alle Daten zu den Bohrkernen 1 bis 4, 6 sowie 9 bis 11 sind [10] entnommen. Alle Bohrkerne stammen jeweils aus dem ersten Fahrstreifen, der durch den LKW-Verkehr am stärksten belastet ist. Eine Ausnahme ist Bohrkern 5, der aus dem Seitenstreifen entnommen wurde.

Die Bohrkerne wurden durch Sägen in Längsrichtung halbiert. Auf zwei Seiten wurden Messmarken für die Längenmessung aufgeklebt, um sie anschließend mit dem "60 °C-Betonversuch mit Alkalizufuhr von außen" gemäß dem Lagerungsplan in Tafel 3 zu prüfen. Die Versuche wurden mit einer 3 %igen NaCl-Lösung durchgeführt. Mit den Versuchen sollte der Zusammenhang zwischen der in der Praxis beobachteten Schadenskategorie einer Fahrbahndecke und dem Restdehnungspotenzial des Betons im "60 °C-Betonversuch mit Alkalizufuhr" aufgezeigt werden. Auf der Grundlage dieses Zusammenhangs sollte ein Beurteilungskriterium für die Betonprüfungen mit Alkalizufuhr im 60 °C-Betonversuch abgeleitet werden. then cracks are formed. Damage category II is characterized by incipient to marked cracking and marked discolouration in the joint areas. The cracks weaken the concrete microstructure, and the edges of the transverse joints are broken by the mechanical stresses from vehicles. This condition is described by damage category III in which loss of substance occurs together with crumbling of the transverse joints.

3.2 Drill cores from road pavements

Drill cores (15 cm diameter x approx. 30 cm) were taken from the road pavements of several concrete motorways in Germany. The road pavements were assessed visually and allocated to a damage category during visits to the sections. Essential information about the drill cores, the road pavement and their damage categories is listed in Table 2. All the data on drill cores 1 to 4, 6 and 9 to 11 were taken from [10]. Each of the drill cores was taken from the first traffic lane, which is the lane most heavily stressed by the lorry traffic. An exception to this was drill core 5, which was taken from the hard shoulder.

The drill cores were sawn in half lengthwise. Measuring studs for the longitudinal measurements were attached to the two ends for subsequent testing with the "60 °C concrete test with external supply of alkalis" in accordance with the storage plan in Table 3. The trials were carried out with a 3 % NaCl solution. The trials were intended to indicate the relationship between the damage category of a road pavement observed in practice and the residual expansion potential of the concrete in the "60 °C concrete test with external supply of alkalis". On the basis of this relationship it should be possible to derive an assessment criterion for the concrete tests with external supply of alkalis in the 60 °C concrete test.

3.3 Influence of the sodium chloride concentration

The 60 °C concrete tests were carried out on different laboratory concretes and half drill cores in parallel with 3 % and 10 % NaCl solutions. These tests were intended to indicate the relationship between the results when using the two NaCl concentrations. Knowledge of this relationship might make it possible to apply results from tests with 3 % NaCl solution to tests that were carried out with 10 % NaCl solution. This also made it possible to compare the assessment criteria with one another.

Table 2: Informa	tion on the sections of	of motorway inve	stigated and class	ification in damag	ge categories as	defined in [9]	
Autobahnlos Motorway section	Alter bei Probenahme in Jahren Age on sampling in years	Entnahmestelle Sampling point	Schadenskate- gorie nach [9] Damage cate- gory acc. to [9]	Verfärbung der Fuge Discolouration of the joints	Netzrisse Cracking	Längs- und Querrisse Longitudinal and transverse cracks	Substanz- schäden Substance damage
1	9	1. FS 1 st TL		n. e. <i>n.r.</i>	ja yes	Längsrisse,	ja yes
2	15	1. FS 1 st TL		n. e. <i>n.r.</i>	ja yes	Querrisse Longitudinal cracks, trans-	ja – vereinzelt yes, occasional
3	9	1. FS 1 st TL	- 111 -	n. e. <i>n.r.</i>	ja yes	verse cracks	ja yes
4	12	1. FS 1 st TL		ja yes	ja yes	ja yes	ja yes
5	12	SS HS		ja yes	ja, starke Rissbildung yes, severe cracking	nein no	nein no
6	14	1. FS 1 st TL		n. e. <i>n.r.</i>	ja yes	Längsrisse longitudinal cracks	nein no
7	12	1. FS 1 st TL		nein no	ja yes	leichte Längsrisse small longitudi- nal cracks	nein no
8	18	1. FS 1 st TL	- 1	nein no	ja, geringe Rissbildung yes, slight cracking	nein no	nein no
9	10	1. FS 1 st TL		nein no	Schwindrisse	nein <i>no</i>	nein no
10	12	1. FS 1 st TL		nein no	cracks	nein no	nein no
11	16	1. FS 1 st TL	kein Schaden no damage	nein no	sehr feine Schwindrisse very fine shrinkage cracks	nein no	nein no

Tafel 2: Informationen zu den untersuchten Autobahnlosen und Einordnung in eine Schadenskategorie nach [9]
Table 2: Information on the sections of motorway investigated and classification in damage categories as defined in

1. FS = erster Fahrstreifen; SS = Seitenstreifen 1st TL = first traffic lane; HS = hard shoulder n. e.: nicht erfasst n.r.: not recorded

Tafel 3: Lagerungsplan im 60 °C-Betonversuch mit Alkalizufuhr von außen
Table 3: Storage plan in the 60 $^\circ\mathrm{C}$ concrete test with external supply of alkalis

Lagerungsphase Storage phase	Lagerungsdauer Storage time	Messung am Ende der Lagerung Measurement at end of storage	Klima Climate
Probenvorbereitung, Kleben von Messmarken Sample preparation, attachment of measuring studs	_	-	20 °C und 65 % r. F. 20 °C and 65 % r.h.
Vorlagerung 7 d Preliminary storage 7 d	6 d	_	60 °C und ≥ 98 % r. F. 60 °C and ≥ 98 % r.h
	1 d	Nullmessung zero measurement	20 °C und ≥ 98 % r. F. 20 °C and ≥ 98 % r.h.
Wechsellagerung im Turnus von 14 d <i>Alternating storage every 14 d</i>	5 d	_	60 °C im Trockenschrank 60 °C in drying cabinet
	2 d	_	20 °C in NaCl-Prüflösung 20 °C in NaCl test solution
	6 d	_	60 °C und ≥ 98 % r. F. 60 °C and ≥ 98 % r.h.
	1 d	Messung measurement	20 °C und ≥ 98 % r. F. 20 °C and ≥ 98 % r.h.

Tafel 4: Laborbeton 1 = Nachgestellter Beton des Autobahnloses A10-8, entspricht Autobahnlos 1 und 3 in Tafel 2; Daten entnommen aus [10] Table 4: Laboratory concrete 1 = replicated concrete from motorway section A10-8, corresponds to motorway sections 1 and 3 in Table 2; data taken from [10]

Ausgangsstoffe Starting material	Korngruppe [mm] Size range [mm]	Anteil [Vol%] Proportion [vol. %]	Gehalt ³⁾ [kg/m ³] Content ³⁾ [kg/m ³]
Sand	0/2	30 ¹⁾	543
Kies / Gravel	2/8	20 ¹⁾	359
Kies / Gravel	8/16	10 ¹⁾	180
Granodiorit-Splitt Crushed Grandiorite	16/22	40 ¹⁾	726
Zement CEM I 42,5 N ²⁾ CEM I 42,5 N ²⁾ cement	-	_	340
Zugabewasser (w/z = 0,46) Mixing water (w/c = 0.46)	_	_	156
Luftgehalt / Air content	-	5,0 ³⁾	-

¹⁾ Bezug: Gesteinskörnung / W.r.t.: aggregate ²⁾ Na₂O-Äquivalent = 0,85 M.-% (0,81 M-% durch Zement + 0,04 M.-% durch Zugabe von K₂SO₄) / Na₂O equivalent = 0.85 mass % (0,81 mass % of Cement + 0,04 mass % by addition of K₂SO₄) ³⁾ Bezug: Beton / W.r.t.: concrete

Tafel 5: Laborbeton 9 = Nachgestellter Beton des Autobahnloses A40-7, Autobahnlos 9 in Tafel 2; Daten entnommen aus [10]	
Table 5: Laboratory concrete 9 = replicated concrete from motorway section A40-7, motorway section 9 in Table 2; data taken from [10]

Ausgangsstoffe Starting material	Korngruppe [mm] Size range [mm]	Anteil [Vol%] Proportion [vol. %]	Gehalt ³⁾ [kg/m ³] Content ³⁾ [kg/m ³]
Sand	0/2	28,2 ¹⁾	512
Kies / Gravel	2/8	34,2 ¹⁾	623
Grauwacke-Splitt Crushed Greywacke	8/11	27,3 ¹⁾	510
Grauwacke-Splitt Crushed Greywacke	11/16	10,2 ¹⁾	191
Zement CEM I 42,5 N ²⁾ CEM I 42,5 N ²⁾ cement	-	-	351
Zugabewasser (w/z = 0,42) Mixing water (w/c = 0.42)	_	-	147
Luftgehalt / Air content		5,0 ³⁾	_

¹⁾ Bezug: Gesteinskörnung / W.r.t.: aggregate

²⁾ Na₂O-Äquivalent = 0,81 M.-% anstelle von 0,78 M.-% des ursprünglichen Zementes / Na₂O equivalent = 0.81 mass % instead of 0.78 mass % in the original cement ³⁾ Bezug: Beton / W.r.t.: concrete

3.3 Einfluss der Natriumchlorid-Konzentration

60 °C-Betonversuche wurden an verschiedenen Laborbetonen und Bohrkernhälften parallel mit einer 3 %igen und mit einer 10 %igen NaCl-Lösung durchgeführt. Mit diesen Versuchen sollte der Zusammenhang zwischen den Ergebnissen bei Verwendung der beiden NaCl-Konzentrationen aufgezeigt werden. In Kenntnis dieses Zusammenhangs ließen sich ggf. Ergebnisse aus Prüfungen mit einer 3 %igen NaCl-Lösung auf Prüfungen übertragen, die mit einer 10 %ige NaCl-Lösung durchgeführt wurden. Auch die Beurteilungskriterien ließen sich auf diesem Wege miteinander vergleichen.

3.4 Nachgestellte Betone von Fahrbahndecken

Die Betone einer geschädigten (Autobahnlose 1 und 3 mit gleicher Betonzusammensetzung, s. Tafel 2) und einer ungeschädigten Fahrbahndecke (Autobahnlos 9, s. Tafel 2) wurden im Labor nachgestellt. Die Betone werden nachfolgend als Laborbeton 1 bzw. Laborbeton 9 bezeichnet. Diese Betone wurden mit dem "60 °C-Betonversuch mit Alkalizufuhr von außen" unter Verwendung einer 3 %igen bzw. einer 10 %igen NaCl-Lösung untersucht. In den Tafeln 4 und 5 sind die Betonrezepturen zusammengestellt, die [10] entnommen wurden. Es wurden aktuelle Proben der Gesteinskörnung der entsprechenden Lieferwerke verwendet und Zement eines Werks eingesetzt, dessen Portlandzement ein vergleichbares Na₂O-Äquivalent aufwies. Mit diesen Prüfungen sollten die Bewer-

3.4 Simulated road pavement concretes

The concretes from damaged road pavement (motorway sections 1 and 3 with the same concrete composition, see Table 2) and an undamaged road pavement (motorway section 9, see Table 2) were simulated in the laboratory. The concretes are designated below as laboratory concrete 1 and laboratory concrete 9 respectively. These concretes were investigated with the "60 °C concrete test with external supply of alkalis" using 3 % and 10 % NaCl solutions. The concrete mix formulations, which were taken from [10], are listed in Tables 4 and 5. Current samples of the aggregate from the corresponding supply plants were used together with cement from a plant where the Portland cement had a comparable Na₂O equivalent. These tests were intended to confirm the evaluation criteria that were derived from the trials described in Sections 3.2 and 3.3.

3.5 Comparison of the 60 $^{\circ}\mathrm{C}$ concrete test with the cyclic climate storage

Comparative investigations of ASR performance testing have been carried out during the past few years at the Research Institute (60 °C concrete test with and without external supply of alkalis) and at the Bauhaus University Weimar (cyclic climate storage) on a total of 18 concretes [7, 8, 11]. The concretes were made up as follows from the same starting materials:

w/c = 0.42, c = 370 kg/m³, air void content: 4.5 ± 0.5 vol. % and w/c = 0.42, c = 430 kg/m³, air void content: ≥ 5.5 vol. %.

tungskriterien bestätigt werden, die aus den Versuchen abgeleitet wurden, die in den Abschnitten 3.2 und 3.3 beschrieben wurden.

3.5 Vergleich 60 °C-Betonversuch und Klimawechsellagerung

In den vergangenen Jahren wurden vergleichende Untersuchungen zur AKR-Performance-Prüfung im Forschungsinstitut (60 °C-Betonversuch ohne und mit Alkalizufuhr von außen) und an der Bauhaus-Universität Weimar (Klimawechsellagerung) an insgesamt 18 Betonen durchgeführt [7, 8, 11]. Die Betone waren aus den gleichen Ausgangsstoffen wie folgt zusammengesetzt:

 $w/z = 0,42, z = 370 \text{ kg/m}^3$, LP-Gehalt: 4,5 ± 0,5 Vol.-% bzw.

w/z = 0,42, z = 430 kg/m³, LP-Gehalt: ≥ 5,5 Vol.-%.

Unterschiedliche Gesteinskörnungen und Portlandzemente (Na₂O-Äquivalent zwischen 0,56 und 0,89 M.-%) wurden verwendet. Die 60 °C-Betonversuche wurden mit einer 3 %igen und einer 10 %igen NaCl-Lösung und die Klimawechsellagerung mit einer 0,6 molaren NaCl-Lösung durchgeführt.

3.6 Chloridprofil im Beton bei Alkalizufuhr von außen

Zur Abschätzung des Eindringverhaltens von Natriumchlorid in Beton während des 60 °C-Betonversuchs wurde der Chloridgehalt von zwei Betonbalken des Laborbetons 9 (s. Abschnitt 3.4) nach elf Zyklen der Wechsellagerung über den Querschnitt bestimmt. Dazu wurden von den Betonbalken allseitig 10 mm dicke Scheiben gesägt. Die Scheiben wurden analysenfein gemahlen, der wasserlösliche Chloridgehalt nach DIN EN 196-2 wurde bestimmt und auf den Zementsteinanteil bezogen. Die Ergebnisse wurden mit den Ergebnissen der Untersuchungen des IGF-Vorhabens 15977 N [12] verglichen. In [12] war der Chloridgehalt an Betonbohrkernen aus 20 Jahre alten Fahrbahndecken und an Laborprobekörpern aus dem 60 °C-Betonversuch und der Klimawechsellagerung bestimmt worden.

3.6 Chloride profile in concrete with external supply of alkalis

The levels of chloride in two concrete beams made with laboratory concrete 9 (see Section 3.4) after eleven cycles of alternating storage were determined over the cross-section to assess the penetration behaviour of sodium chloride in concrete during the 60 °C concrete test. 10 mm thick slices were sawn from all sides of the concrete beams for this purpose. The slices were ground to analysis fineness and the levels of water-soluble chloride were determined as specified in DIN EN 196-2 and related to the content of hardened cement paste. The results were compared with the results of the investigations of IGF Project 15977 N [12]. The levels of chloride in concrete drill cores from 20-year-old road pavements and in laboratory test pieces from the 60 °C concrete test and the cyclic climate storage had been determined in [12].

4 Results

4.1 Drill cores from road surfaces

The expansions of the half drill cores in the 60 °C concrete test with external supply of alkalis in the form of 3 % NaCl solution are shown in Fig. 1 and in an extract in Fig. 2. The markers have been coloured to correspond to the damage categories of the road pavements. After ten cycles (140 days) the half drill cores from road pavements in damage category III exhibited expansions between 0.5 and 1.8 mm/m.

The half drill cores from two road pavements in damage category II expanded between 0.4 mm/m and 0.6 mm/m. The expansions of the half drill cores from road pavements in damage category I lay between 0.1 mm/m and 0.3 mm/m (see Fig. 2). The half drill cores

Bild 1: Dehnungen von Bohrkernhälften (Mittelwert aus zwei Bohrkernhälften) aus verschieden stark geschädigten Fahrbahndecken im 60 °C-Betonversuch mit Alkalizufuhr von außen durch eine 3 %ige NaCl-Lösung; Daten teilweise aus [10] entnommen Figure 1: Expansion of drill core halves (average from two drill core halves) taken from road pavements that had been damaged to differing extents and tested in the 60 °C concrete test with external supply of alkalis by a 3 % NaCl solution; some data are taken from [10]

Bild 2: Dehnungen von Bohrkernhälften (Mittelwert aus zwei Bohrkernhälften) aus verschieden stark geschädigten Fahrbahndecken im 60 °C-Betonversuch mit Alkalizufuhr von außen durch eine 3 %ige NaCl-Lösung (Ausschnitt aus Bild 1); Daten teilweise [10] entnommen

Figure 2: Expansion of drill core halves (average from two drill core halves) taken from road pavements that had been damaged to differing extents and tested in the 60 °C concrete test with external supply of alkalis by a 3 % NaCl solution (detail from Fig. 1); some data are taken from [10]

4 Ergebnisse

4.1 Bohrkerne aus Fahrbahndecken

Die Dehnungen der Bohrkernhälften im 60 °C-Betonversuch mit Alkalizufuhr durch eine 3 %ige NaCl-Lösung sind in Bild 1 und in einem Ausschnitt in Bild 2 dargestellt. Die Marker wurden entsprechend der Schadenskategorie der Fahrbahndecke eingefärbt. Bohrkernhälften aus Fahrbahndecken der Schadenskategorie III wiesen nach zehn Zyklen (140 Tage) Dehnungen zwischen 0,5 und 1,8 mm/m auf.

Die Bohrkernhälften von zwei Fahrbahndecken der Schadenskategorie II dehnten sich zwischen 0,4 mm/m und 0,6 mm/m. Die Dehnungen der Bohrkernhälften aus Fahrbahndecken der Schadenskategorie I lagen zwischen 0,1 mm/m und 0,3 mm/m (s. Bild 2). Die Bohrkernhälften aus einer Fahrbahndecke, die nach 16 Jahren keine Schäden (BK11) aufwies, dehnten sich rd. 0,3 mm/m. Mit einem Beurteilungskriterium der Dehnung von 0,3 mm/m nach zehn Zyklen (140 Tagen) konnten die Betone wie folgt unterschieden werden:

Betone aus Fahrbahndecken der ersten Fahrspur von Bundesautobahnen, die nach zehn bis 18 Jahren intensiver Nutzung keine Anzeichen einer schädigenden AKR oder leichte Netzrisse, die nicht auf eine AKR zurückzuführen waren, oder Verfärbungen aufwiesen (kein Schaden bzw. Schadenskategorie I),

Betone aus Fahrbahndecken der ersten Fahrspur von Bundesautobahnen, die nach neun bis 15 Jahren Längs- und Querrisse aufwiesen und bei denen z. T. bereits Substanzverlust aufgetreten war (Schadenskategorien II und III).

4.2 Einfluss der Natriumchlorid-Konzentration

Um den Einfluss der Alkalizufuhr einer 3 %igen und einer 10 %igen NaCl-Lösung vergleichen zu können, wurden einige Bohrkernhälften und Laborbetone im 60 °C-Betonversuch mit beiden NaCl-Konzentrationen geprüft (Bild 3). Die Dehnungen mit einer 10 %igen NaCl-Lösung sind im Mittel etwa doppelt so hoch wie die Dehnungen bei einer 3 %igen NaCl-Lösung. Die Bewertung mit einem Kriterium der Dehnung von 0,3 mm/m bei einer 3 %igen NaCl-Lösung entspräche in etwa der Bewertung mit einem Kriterium der Dehnung von 0,6 mm/m bei einer 10 %igen NaCl-Lösung. In beiden Fällen wurde die Bewertung nach zehn Zyklen (140 Tage nach Ende der Vorlagerung) vorgenommen. In Bild 3 weichen die Ergebnisse bei drei Betonen von diesem Zusammenhang ab. Eine Ursache für das abweichende Verhalten kann derzeit nicht angegeben werden. Bei zwei Laborbetonen würde dies zu einer abweichenden Bewertung führen (Markierung durch grauen Kreis). Beide Betone wurden mit der gleichen präkambrischen Grauwacke hergestellt.

Gemäß Abschnitt 4.1 dürften folglich nach zehn bis 18 Jahren Nutzung bei allen Betonen, die in Bild 3 im blauen Bereich liegen, keine Anzeichen einer schädigenden AKR oder nur leichte Netzrisse oder Verfärbungen in der Praxis auftreten.

4.3 Nachgestellte Betone von Fahrbahndecken

Die Dehnungen der Laborbetone 1 und 9 im 60 °C-Betonversuch mit Alkalizufuhr sind in Bild 4 dargestellt. Auf der linken Seite sind die Dehnungen für eine 3 %ige NaCl-Lösung bei Verwendung eines Bewertungskriteriums für die Dehnung von 0,3 mm/m dargestellt; rechts sind die Dehnungen für eine 10 %ige NaCl-Lösung bei Verwendung eines Bewertungskriteriums für die Dehnung von 0,5 mm/m wiedergegeben. Bei einer 10 %igen NaCl-Lösung zeigten nach zehn Zyklen (168 Tage) beide Betone Dehnungen deutlich über dem Grenzwert von 0,5 mm/m, der bisher gemäß [5, 6] verwendet wurde. Gleiches würde bei Ver-wendung eines Bewertungskriteriums für die Dehnung von 0,6 mm/m gelten. Mit einem Beton vergleichbar dem Laborbeton 1 waren in der Praxis tatsächlich AKR-Schäden aufgetreten (siehe Autobahnlos 1 und Autobahnlos 3 in Tafel 2). Die Fahrbahndecke mit Laborbeton 9 war dagegen nach zehn Jahren der Schadenskategorie I zugeordnet worden (siehe Autobahnlos 9 in Tafel 2). Bei der Prüfung mit der 3 %igen NaCl-Lösung und einem Bewertungskriterium von 0,3 mm/m hätte der Laborbeton 9 die Prüfung bestanden. Der Laborbeton 1, dessen "zugehörige" Fahrbahndecke geschä-

Bild 3: Dehnungen von Bohrkernhälften (Mittelwert aus zwei Bohrkernhälften) aus Fahrbahndecken und Laborbetonen nach zehn Zyklen (140 Tage nach Ende der Vorlagerung) im 60 °C-Betonversuch mit Alkalizufuhr von außen durch eine 3 %ige und eine 10 %ige NaCl-Lösung im Vergleich

Figure 3: Expansion of drill core halves (average from two drill core halves) taken from road pavements and laboratory concretes after ten cycles (140 days after the end of preliminary storage) and tested in the 60 °C concrete test with external supply of alkalis by 3 % and 10 % NaCl solutions

from one road pavements that after 16 years exhibited no damage (BK11) expanded by about 0.3 mm/m. Using an expansion of 0.3 mm/m after ten cycles (140 days) as the assessment criterion it was possible to differentiate between the concretes as follows:

Concretes from road pavements in the first traffic lanes of federal motorways that after ten to 18 years of intensive use exhibited no signs of a harmful ASR or slight cracking that was not attributable to an ASR or discolouration (no damage or damage category I),

Concretes from road pavements in the first traffic lanes of federal motorways that after nine to 15 years exhibited longitudinal and transverse cracks and in which loss of substance had occurred in some cases (damage categories II and III).

4.2 Influence of the sodium chloride concentration

In order to be able to compare the influence of external supply of alkalis with 3 % and 10 % NaCl solutions some half drill cores and laboratory concretes were tested in the 60 °C concrete test with both NaCl concentrations (Fig. 3). The expansions with 10 % NaCl solution were on average about twice as high as the expansions with 3 % NaCl solution. The evaluation with an expansion of 0.3 mm/m as the criterion with 3 % NaCl solution corresponded approximately to the evaluation with an expansion of 0.6 mm/m as the criterion with 10 % NaCl solution. In both cases the evaluation was carried out after ten cycles (140 days after the end of preliminary storage). The results in Fig. 3 deviate from this relationship for three concretes. At present it is not possible to give the reasons for this deviant behaviour. For two laboratory concretes this would lead to a different evaluation (marked by a grey circle). Both concretes were produced with the same Precambrian greywacke.

In accordance with Section 4.1 this means that no indications of a harmful ASR or only slight cracking or discolouration should occur in practice after ten to 18 years use for all the concretes that lie in the blue region in Fig. 3.

4.3 Simulated road pavements concretes

The expansions of laboratory concretes 1 and 9 in the 60 °C concrete test with external supply of alkalis are shown in Fig. 4.

digt war (Schadenskategorie III), wies nach zehn Zyklen Dehnungen oberhalb des Bewertungskriteriums von 0,3 mm/m auf. In diesem Fall könnte das Verhalten in der Praxis bei einer Prüfung mit der 3 %igen NaCl-Lösung und einem Bewertungskriterium von 0,3 mm/m besser abgebildet werden als mit einer 10 %igen NaCl-Lösung.

4.4 Vergleich 60 °C-Betonversuch mit Alkalizufuhr und Klimawechsellagerung

In Bild 5 links sind die Dehnungen zum Beurteilungszeitpunkt in beiden Verfahren für 18 Betone gegenübergestellt. Sechs Ergebnisse stammen aus dem FE-Vorhaben 89.214/2008/AP "AKR im Betondeckenbau" [11], das von der Bundesanstalt für Straßenwesen (BASt) beauftragt wurde. 17 Betone wurde mit beiden Verfahren vergleichbar bewertet, wenn nach acht Zyklen der Klimawechsellagerung mit 0,6 molarer NaCl-Lösung das Bewertungskriterium 0,5 mm/m und nach zehn Zyklen im 60 °C-Betonversuch mit Alkalizufuhr mit 10 %iger NaCl-Lösung das Bewertungskriterium 0,5 mm/m verwendet wird. In diesem Fall würde sich bei einem Beton eine abweichende Bewertung (hellblauer Marker) ergeben. Würde das Bewertungskriterium von 0,6 mm/m nach zehn Zyklen im 60 °C-Betonversuch mit einer 10 %iger NaCl-Lösung verwendet werden, wären es vier Betone.

Bild 5 rechts zeigt den Vergleich der Ergebnisse zwischen dem 60 °C-Betonversuch mit Alkalizufuhr und der Klimawechsellagerung, wenn der 60 °C-Betonversuch mit einer 3 %igen NaCl-Lösung durchgeführt wird und 0,3 mm/m als Bewertungskriterium angesetzt würden. Vier von 16 Betonen würden unterschiedlich bewertet werden, da vier Betone den 60 °C-Betonversuch bestanden, aber bei der Klimawechsellagerung Dehnungen oberhalb des Grenzwerts aufwiesen.

4.5 Chloridprofil im Beton bei Alkalizufuhr von außen

Bild 6 zeigt den wasserlöslichen Chloridgehalt im Beton bezogen auf den Zementsteinanteil in Abhängigkeit vom Abstand zur Oberfläche. Der Chloridgehalt wurde an Bohrkernen aus Betonfahrbahndecken und an Prüfkörpern nach Abschluss der Klimawechsellagerung (Probekörper bereitgestellt durch das F.A. Finger-Institut für Baustoffkunde – Bauhaus-Universität Weimar) bzw. nach Abschluss des 60 °C-Betonversuchs mit Alkali-

The expansions with 3 % NaCl solution when using an evaluation criterion for the expansion of 0.3 mm/m are shown in the left side; on the right are the expansions with 10 % NaCl solution when using an evaluation criterion for the expansion of 0.5 mm. After ten cycles (168 days) with 10 % NaCl solution both concretes exhibited expansions significantly above the limit of 0.5 mm/m that had been used previously in accordance with [5, 6]. The same would have applied if an evaluation criterion for the expansion of 0.6 mm/m had been used. In practice ASR damage had actually occurred (see motorway sections 1 and 3 in Table 2) with a concrete comparable with laboratory concrete 1. On the other hand, after ten years the road pavement with laboratory concrete 9 had been allocated to damage category I (see motorway section 9 in Table 2). In the test with 3 % NaCl solution and an evaluation criterion of 0.3 mm/m the laboratory concrete 9 would have passed the test. After ten cycles the laboratory concrete 1, for which the "associated" road pavement had been damaged (damage category III), exhibited expansions above the evaluation criterion of 0.3 mm/m. In this case the behaviour in practice was better simulated by the test with 3 % NaCl solution and an evaluation criterion of 0.3 mm/m than with 10 % NaCl solution.

4.4 Comparison of cyclic climate storage with the 60 $^{\circ}\mathrm{C}$ concrete test with external supply of alkalis

The expansions with the two methods at the time of assessment are compared in Fig. 5, left, for 18 concretes. Six results come from FE Project 89.214/2008/AP "ASR in concrete road pavements" [11] that was commissioned by the BASt (Federal Highway Research Institute). A comparative evaluation using both methods was carried out on 17 concretes by using the evaluation criterion of 0.5 mm/m after eight cycles of cyclic climate storage with 0.6 molar NaCl solution and the evaluation criterion 0.5 mm/m after ten cycles in the 60 °C concrete test with external supply of alkalis using 10 % NaCl solution. In this case a different evaluation (light blue marker) would have been obtained for one concrete. This would have been four concretes if the evaluation criterion of 0.6 mm/m after ten cycles had been used in the 60 °C concrete test with 10 % NaCl solution.

Fig. 5, right, compares the results from the 60 °C concrete test with external supply of alkalis with the cyclic climate storage when

Bild 4: Dehnungen von Betonbalken im 60 °C-Betonversuch mit Alkalizufuhr von außen; links: 3 %ige NaCl-Lösung , rechts: 10 %ige NaCl-Lösung

Figure 4: Expansion of concrete prisms in the 60 °C concrete test with external supply of alkalis; left: 3 % NaCl solution, right: 10 % NaCl solution

Bild 5: Dehnung verschiedener Betone für die Feuchtigkeitsklasse WS nach acht Zyklen der Klimawechsellagerung mit 0,6 molarer NaCl-Lösung (Bewertungskriterium 0,5 mm/m) und Dehnung nach zehn Zyklen im 60 °C-Betonversuch mit Alkalizufuhr; links: 60 °C-Betonversuch mit 10 %iger NaCl-Lösung (Bewertungskriterium 0,5 mm/m bzw. 0,60 mm/m), rechts: 60 °C-Betonversuch mit 3 %iger NaCl-Lösung (Bewertungskriterium 0,3 mm/m)

Figure 5: Expansion of different concretes for the WS moisture class after eight cycles of cyclic climate storage with 0.6 molar NaCl solution (evaluation criterion 0.5 mm/m) and expansion after ten cycles in the 60 °C concrete test with supply of alkalis; left: 60 °C concrete test with 10 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m or 0.60 mm/m), right: 60 °C concrete test with 3 % NaCl solution (evaluation criterion 0.5 mm/m)

zufuhr untersucht [12]. Der lösliche Chloridgehalt im Zementstein betrug bei bis zu 20 Jahre alten Fahrbahndeckenbetonen im ersten Zentimeter des Betons bis zu 2M.-% und nahm bis zu einer Tiefe von rd. 5 cm kontinuierlich ab. Bei der Klimawechsellagerung und beim 60 °C-Betonversuch mit 10 %iger NaCl-Lösung lagen die Chloridgehalte im oberflächennahen Bereich zwischen rd. 3 M.-% und 4 M.-%. Im 60 °C-Betonversuch mit einer 3 %igen NaCl-Lösung entsprach der Chloridgehalt in etwa den Gehalten, die in der Oberfläche der Fahrbahndecken ermittelt worden waren. Der 60 °C-Betonversuch mit einer 3 %igen NaCl-Lösung bildet die Verhältnisse der untersuchten Fahrbahndeckenbetone ab. Diese Ergebnisse stimmen mit Beobachtungen der Technischen Universität Hamburg-Harburg überein [13]. Die Anpassung der Prüfung und der Bewertungskriterien im 60 °C-Betonversuch würde damit ggf. die Übertragbarkeit auf Praxisverhältnisse verbessern.

5 Zusammenfassung

In Betonprüfungen mit Alkalizufuhr kann die Alkaliempfindlichkeit von Betonen (AKR-Performance-Prüfung) bzw. Gesteinskörnungen (WS-Grundprüfung) für Fahrbahndecken der Feuchtigkeitsklasse WS bewertet werden. Hierzu wurde an der Bauhaus-Universität Weimar (FIB) und im Forschungsinstitut in Düsseldorf (FIZ) jeweils ein Verfahren entwickelt: Betonversuch mit "Klimawechsellagerung" und der "60 °C-Betonversuch mit Alkalizufuhr von außen". Durch die Anwendung der Verfahren sollen zukünftig zielsicher AKR-Schäden vermieden werden. Durch die Festlegung von Bewertungskriterien müssen daher die Fälle erfasst und zukünftig ausgeschlossen werden, die nachweislich zum Schaden geführt haben. Es muss aber auch weiterhin möglich sein, mit den Betonrezepturen bzw. Gesteinskörnungen zu bauen, die sich in der Praxis nachweislich bewährt haben.

Um beiden Anforderungen gerecht zu werden, muss die Übertragbarkeit der Laborergebnisse auf Praxisverhältnisse gegeben sein. Um die Übertragbarkeit beurteilen zu können, wurden Bohrkerne aus Betonfahrbahndecken und Laborbetone mit dem the 60 °C concrete test was carried out with 3 % NaCl solution and 0.3 mm/m was applied as the evaluation criterion. Four of the 16 concretes would have been evaluated differently as four concretes passed the 60 °C concrete test but exhibited expansions above the limit in the cyclic climate storage.

4.5 Chloride profile in the concrete with external supply of alkalis

Fig. 6 shows the water-soluble chloride content in the concrete relative to the content of hardened cement paste in relation to the distance from the surface. The chloride content was examined in drill cores from concrete road pavements and in test specimens after conclusion of the cyclic climate storage (test specimens provided by the F.A. Finger Institute for Building Materials Science - Bauhaus University Weimar) and after the conclusion of the 60 °C concrete test with external supply of alkalis [12]. In concrete road pavements that were up to 20 years old the soluble chloride content in the hardened cement paste in the first centimetre of the concrete was up to 2 mass % and fell continuously to a depth of about 5 cm. With the cyclic climate storage and with the 60 °C concrete test with 10 % NaCl solution the levels of chloride in the area close to the surface lay between about 3 mass % and 4 mass %. In the 60 °C concrete test with 3 % NaCl solution the chloride content corresponded approximately to the levels that had been measured in the surface of the road pavements, so the 60 °C concrete test with 3 % NaCl solution simulated the conditions in the concrete road pavements that had been investigated. These results are in agreement with observations by Hamburg-Harburg Technical University [13]. Adjusting the test and the evaluation criteria in the 60 °C concrete test would possibly therefore improve their transferability to practical conditions.

5 Summary

The alkali reactivity of concretes (ASR performance testing) and of aggregates (WS concrete road testing) for road pavements in

Bild 6: Wasserlösliche Chloridgehalte in Bohrkernen aus Betonfahrbahndecken und in Laborprüfkörpern nach Abschluss von AKR-Performance-Prüfungen (Klimawechsellagerung und 60 °C-Betonversuch mit Alkalizufuhr von außen), bezogen auf den Zementsteinanteil [12]

Figure 6: Content of water-soluble chloride in drill cores from concrete road pavements and in laboratory test specimens after conclusion of the ASR performance tests (cyclic climate storage and 60 °C concrete test with external supply of alkalis), relative to the content of hardened cement paste [12]

"60 °C-Betonversuch mit Alkalizufuhr von außen" untersucht. Die Ergebnisse können wie folgt zusammengefasst werden:

Betone, die im 60 °C-Betonversuch mit einer 3 %igen NaCl-Lösung nach zehn Zyklen eine maximale Dehnung von 0,3 mm/m aufwiesen, zeigten in Fahrbahndecken der ersten Fahrspur von Bundesautobahnen nach zehn bis 18 Jahren intensiver Nutzung keine Anzeichen einer schädigenden AKR oder nur leichte Netzrisse, die nicht auf eine AKR zurückzuführen waren. Zum Teil traten Verfärbungen im Bereich der Querfugen/Fugenkreuze auf (kein Schaden bzw. Schadenskategorie I). Bei größeren Dehnungen muss bei Fahrbahndecken der Feuchtigkeitsklasse WS nach neun bis 15 Jahren von Schäden der Schadenskategorie II oder III ausgegangen werden.

Vergleichsprüfungen mit einer 10 %igen NaCl-Lösung im 60 °C-Betonversuch zeigten, dass in den meisten Fällen die Bewertung wie mit einer 3 %igen NaCl-Lösung erzielt wird, wenn ein Bewertungskriterium von 0,6 mm/m nach zehn Zyklen angesetzt werden würde. Mit der 3 %igen NaCl-Lösung und einem Bewertungskriterium der Dehnung von 0,3 mm/m scheint die Übertragbarkeit auf Praxisverhältnisse im Vergleich zur Prüfung mit einer 10 %igen NaCl-Lösung und einem Bewertungskriterium von 0,5 mm/m nach zehn Zyklen (derzeitige Praxis) ggf. verbessert werden zu können. Voraussetzung ist, dass auf Seiten des Bauherrn akzeptiert werden kann, dass in Einzelfällen nach zehn Jahren Nutzungsdauer die Schadenskategorie I erreicht wird.

Mit dem "60 °C-Betonversuch mit Alkalizufuhr von außen" und der Klimawechsellagerung wurden Betone fast durchgängig vergleichbar bewertet, wenn der 60 °C-Betonversuch mit einer 10 %igen NaCl-Lösung durchgeführt und 0,5 mm/m als Bewertungskriterium angesetzt wurde. Verwendet man den 60 °C-Betonversuch mit einer 3 %igen NaCl-Lösung und das Bewertungskriterium der Dehnung von 0,3 mm/m nach zehn Zyklen, verringert sich die Übereinstimmung der Bewertung mit der Klimawechsellagerung.

Beim 60°C-Betonversuch mit einer 3 %igen NaCl-Lösung entsprach der Chloridgehalt, der nach Abschluss der Prüfung bestimmt wurde, in etwa den Gehalten, die in der Oberfläche von Fahrbahndecken aus Beton gemessen wurden. Die Anpassung des 60 °C-Betonversuchs würde daher die Übertragbarkeit der Laborversuche auf die Praxisverhältnisse ggf. auch in dieser Hinsicht positiv beeinflussen.

ture by stipulating evaluation criteria. However, it must also continue to be possible to build with concrete mixes and aggregates that have proved successful in practice.

the WS moisture class can

be evaluated in concrete tests

with external supply of alkalis. The alkali reactivity of con-

cretes (ASR performance te-

sting) and of aggregates (con-

crete roads WS testing) for

initial in the WS moisture

class can be evaluated in con-

crete tests with alkali sup-

ply from outside. The Bau-

haus University in Weimar (FIB) and the Research Institute in Duesseldorf (FIZ)

each developed a proce-

dure for this purpose, namely

clic climate storage" and the

supply

the future it will be possi-

ble to avoid ASR damage by

applying these proce-dures. The cases that have

ge must therefore be identified and then excluded in fu-

tests with

°C concrete test with

of

led to dama-

"cv-

alka-

concrete

external

verifiably

"60

In order to fulfil both requirements it must be possible to transfer the laboratory results to practical conditions. The transferability was assessed by investigating drill cores from concrete road pavements and laboratory concretes with the "60 °C concrete test with external supply of alkalis". The results can be summarized as follows:

Concretes that exhibited a maximum expansion of 0.3 mm/m after ten cycles in the 60 °C concrete test with 3 % NaCl solution showed no signs of a harmful ASR after ten to 18 years of intensive use in concrete road pavements in the first traffic lane of federal motorways or only showed slight cracking that was not attributable to an ASR. Discolouration occurred in some cases in the area of transverse joints or joint intersections (no damage or damage category I). With larger expansions it has to be assumed that damage in damage categories II or III will occur in concrete road pavements in the WS moisture class after nine to 15 years.

Comparison testing with 10 % NaCl solution in the 60 °C concrete test showed that in most cases the same evaluation as with 3 % NaCl solution is obtained if an evaluation criterion of 0.6 mm/m after ten cycles is applied. With 3 % NaCl solution and an evaluation criterion for the expansion of 0.3 mm/m the transferability to practical conditions seems possibly better than the test with 10 % NaCl solution and an evaluation criterion of 0.5 mm/m after ten cycles (current practice). One precondition is that the client is prepared to accept that damage category I may occur in individual cases after ten years in use.

With the "60 °C concrete test with external suply of alkalis" and the cyclic climate storage the evaluation of the concretes was almost universally comparable when the 60 °C concrete test was carried out with 10 % NaCl solution and 0.5 mm/m was applied as the evaluation criterion. If the 60 °C concrete test with 3 % NaCl solution with an expansion of 0.3 mm/m after ten cycles as the evaluation criterion was used then agreement of the evaluation with the cyclic climate storage was reduced.

With the 60 °C concrete test with 3 % NaCl solution the chloride content that was determined at the end of the test corresponded approximately to the levels that were measured in the concrete road pavements. Adaptation of the 60 °C concrete test would therefore possibly also have a beneficial effect in this respect on the transferability of the laboratory tests to practically conditions.

Literatur / Literature

- [1] Bonzel, J.: Alkalireaktion unter baupraktischen Bedingungen.
- Verein Deutscher Zementwerke (Hrsg.): Vorbeugende Maßnahmen gegen Alkalireaktion im Beton, Vorträge auf einer Veranstaltung des Forschungsinstituts der Zementindustrie am 20. Februar 1973 im Auditorium Maximum der Universität Hamburg, Hamburg. Düsseldorf: Beton-Verl., 1973 (Schriftenreihe der Zementindustrie 40)
- Und: Bonzel, Justus; Dahms, Jürgen: Alkalireaktion im Beton. beton 23 (1973) H. 11, S. 495-500; H. 12, S. 547-554
- [2] Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton : Vorläufige Richtlinie – Fassung Februar 1974. beton 24 (1974) H. 5, S. 179-185
- [3] Müller, Ch.: Aktuelle Regelwerke f
 ür Beton : Dauerhaftigkeit im Blickpunkt. beton 62 (2012) H. 3, S. 68-75
- [4] Stark, J.; Freyburg, E.; Seyfarth, K.; Giebson, C.; Erfurt, D.: 70 years of ASR with no end in sight? Zement-Kalk-Gips 63 (2010) H. 4, S. 86-95; H. 5, S. 55-70
- [5] Siebel, E.; Böhm, M.; Borchers, I.; Müller, Ch.; Bokern, J.; Schäfer, E.: AKR-Prüfverfahren: Vergleichbarkeit und Praxis-Relevanz. beton 56 (2006) H. 12, S. 599-604; 57 (2007) H. 1-2, S. 63-71
- [6] Müller, Ch.; Borchers, I.; Eickschen, E.: AKR-Pr
 üfverfahren: Auf dem Weg zur Performance-Pr
 üfung. Beton- und Stahlbetonbau 102 (2007) H. 8, S. 528-538
- [7] Müller, Ch.; Borchers, I.; Stark, J.; Seyfarth, K.; Giebson, C.: Beurteilung der Alkaliempfindlichkeit von Betonzusammensetzungen - Vergleich von Performance-Prüfverfahren. Bauhaus-Universität Weimar (Hrsg.): 17. Internationale Baustofftagung: Tagungsbericht (Weimar 23.-26.09.2009). Weimar, 2009, S. 2-0261-2-0266
- [8] Borchers, I.; Müller, Ch.: Assessment of the alkali-reactivity potential of specific concrete mixtures to mitigate damaging ASR in concrete structures. Tagungsband fib-workshop: Performance-based Specifications for Concrete (14.– 15.06.2011). Leipzig, 2011

- [9] Empfehlungen f
 ür die Schadensdiagnose und die bauliche Erhaltung von AKR-gesch
 ädigten Fahrbahndecken aus Beton, Fortschreibung April 2012
- [10] Breitenbücher, R., Sievering, Ch., Schießl, P.; Wenzl, P., Stark, J., Seyfarth, K., Siebel, E., Müller, Ch., Eickschen, E., Böhm, M.: Schlussbericht FE-Vorhaben 08.182/2005/LRB: Rissbildung an Fahrbahndecken aus Beton - Auswirkungen von Alkali-Kieselsäure-Reaktionen (AKR), Phase I: In-situ Untersuchungen an Fahrbahndecken aus Beton mit/ohne Risse. Bochum, Duesseldorf, Weimar, München 2008 Und Reviewlächer B. Sinneiger, Ch. Schiefl, B. Ward, B. Stark, J. Stafarth

Und: Breitenbücher, R., Sievering, Ch., Schießl, P.; Wenzl, P., Stark, J., Seyfarth, K., Siebel, E., Müller, Ch., Eickschen, E., Böhm, M., Rissbildung an Fahrbahndecken aus Beton: Auswirkungen von Alkali-Kieselsäure-Reaktionen (AKR) -Phase 1 In-situ-Untersuchungen an Fahrbahndecken aus Beton mit/ohne Risse. Bremerhaven: Wirtschaftsverlag NW, 2010

- [11] Forschungsinstitut der Zementindustrie; F.A.-Finger-Institut f
 ür Baustoffkunde Weimar (Hrsg.): 2. Entwurf des Technischen Schlussberichts AKR im Betondeckenbau: AKR-Untersuchungen an Fahrbahndecken aus Beton mit Waschbetonoberfläche, Untersuchungen im Rahmen des FE-Vorhabens 89.214/2008/AP. Duesseldorf, Weimar 2010, unveröffentlicht
- [12] Verein Deutscher Zementwerke; Bundesanstalt für Materialforschung und -prüfung (Hrsg): Auswirkungen der Alkalizufuhr durch Taumittel auf Bindemittel für Beton mit alkalireaktiven Gesteinskörnungen: Schlussbericht zu Vorhaben Nr. 15977 N. Duesseldorf, Berlin 2011(IGF-Forschungsvorhaben 15977 N)
- [13] Jehn, C.; Schmidt-Döhl, F.; Franke, L.: Nachträgliche Alkaliaufnahme der Betondecken von Verkehrswegen und der Prüfkörper in Performance-Tests zur Alkalireaktion infolge von Taumittel-Beaufschlagung. beton 62 (2012) H. 10, S. 380-384.